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Preface

The goal of this book is simple: to help the beginner analyst approach com-
mon healthcare problems using foundational, time-tested, and interpretable 
statistical methods.

I write this book as a professional who has worked as a foot soldier in 
the healthcare and pharmaceutical industry for 20 years—with most of those 
years spent doing hands-on analysis. I’m currently a researcher for a large 
healthcare organization, where I spend most of my time implementing sta-
tistical models using patient data and mentoring others. I have published 
regularly during this time, using many of the techniques outlined in this 
book. I have also taught courses on data mining at the University of North 
Carolina at Charlotte, where I helped students grasp foundational statistical 
concepts and apply them tactically to real-world healthcare problems. I will 
stress, however, that this book is not academic but is designed to be a practi-
cal guide for the working professional. As such, I will avoid veering off on 
theoretical tangents and focus on the practical application of the methods 
related to specific healthcare problems. I avoid statistical jargon when pos-
sible and have attempted to explain these concepts as I would to a recently 
hired college graduate or intern.

I know it can be overwhelming to do statistics outside of the controlled 
environment in the classroom. When beginning to conduct statistics in the 
wild, it can feel like the formal education in the classroom is far removed from 
the day-to-day work conducted in the industry. I was hired at my current 
employer nearly 15 years ago, and my first assignment was to help translate 
the statistical documentation of a risk adjustment model (more about risk 
adjustment later) to a team of Java developers so that they could make an 
important update to the methodology. While I had some basic technical skills 
and domain knowledge at the time, having worked in pharma for five years 
prior, I was admittedly overwhelmed by the learning curve ahead of me.

I was provided a methodology document written by a seasoned statisti-
cian, a Harvard PhD no less, who had liberally decorated his documentation 
with (at the time) cryptic statistical notation. Not only was I out of my league 
from a statistics perspective, but I also did not have the foundational health-
care knowledge to thoroughly understand the business problem being solved. 
Exacerbating the issue, I struggled to translate the statistical notation to the 
technical implementation. I began cobbling together various resources to deci-
pher this methodology and how it would be implemented using code. At the 
time, I recall saying that I wished a book existed that outlined the basic con-
cepts of healthcare statistics and the programmatic implementation. I wanted 
to see the notation side by side with the code in the context of healthcare.
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In a sense, this is the book I wish I had as a newcomer to the healthcare 
space. There are many fantastic introductory statistics books, and there are 
also many well-written primers on healthcare data. However, books intro-
ducing statistics in the context of the healthcare setting are scarce, and when 
limited to those written for a professional audience, even fewer options exist. 
I am hopeful that this book will be the resource that I wanted at the time for 
newcomers to the healthcare space.

This book is not simply an introduction to statistics presented with health-
care-related examples. In the following chapters, we’ll certainly discuss foun-
dational statistical methods, such as the hypothesis testing framework, but 
we will also introduce techniques that are often represented in the healthcare 
setting (e.g., risk adjustment, standardized ratios, survival analysis). I will 
not be shy about introducing more “advanced” concepts such as generalized 
additive, hierarchical, and zero-inflated models, as these methods overcome 
common problems that regularly occur within healthcare analyses. Data 
that is non-linear, has multiple levels, and has a high percentage of zeros are 
common among everyday problems. Without awareness of these methods, 
beginner analysts may feel that their hands can be tied—causing them to 
leap too quickly to less interpretable ML/AI approaches. These methods will 
be presented only after an overview of healthcare data sources and measures 
frequently used in healthcare analyses.

One might think of this book as an orientation to healthcare analyses, 
designed to take the reader from concept to implementation (with some 
admittedly bad jokes along the way). While the primary audience for this 
book includes beginner data analysts, data scientists, health researchers, and 
statisticians in the healthcare domain, I believe that the concepts discussed 
here will also benefit individuals in more senior roles or peripheral roles, 
such as business analysts, product owners, and healthcare leaders. Statistical 
literacy is invaluable for all professionals involved in healthcare decision-
making, as it enables them to ask the right questions, interpret data-driven 
results, and make informed choices.

To narrow the scope of this book further, I will emphasize statistical mea-
sures and methods central to patient care and utilization. After all, the patient 
is at the center of all healthcare disciplines. Other aspects of healthcare, such 
as labor and supply chain, are important domains; however, attempting to 
boil the ocean by including the many facets of healthcare outside of patient 
care would, unfortunately, dilute the content of this book. That said, the 
statistical methods discussed here remain transferrable to other domains in 
healthcare (and outside of healthcare).

I’ll stress that we will focus on interpretable methods using applied sta-
tistics. Within the healthcare space, we must have the tools to explain our 
findings meaningfully to our clinical stakeholders. In 2021, I collaborated 
with a research team of surgeons, quality administrators, and public health 
researchers. We employed a multivariable hierarchical logistic regression 
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model (yes, we’ll talk about this too), evaluating how various aspects of care 
prior to a total hip arthroplasty (THA) were associated with a patient’s risk of 
readmission. Our work, published in the Journal of Arthroplasty, concluded, 
for example, that the use of tranexamic acid and spinal anesthesia during 
total hip arthroplasty is associated with reduced odds of readmission. We 
were able to quantify the odds with a measure of statistical significance, 
grounding the analysis in a reproducible framework. The use of interpretable 
methods in that analysis was vital to our collaboration as we were able to 
speak a common language throughout the process and articulate our results 
to the academic community using industry-accepted methods.

But Mike, isn’t the field of statistics becoming antiquated with recent 
developments in machine learning (ML) and artificial intelligence (AI) mod-
els? The field of statistics is foundational and is the backbone of many ML/
AI models, and one might argue that both ML and AI fall under the broader 
umbrella of statistics. Linear regression is not going anywhere soon, and I 
will argue that these foundational methods should first be considered before 
moving to more advanced ML models. I will also argue that there is a range 
of generalized models that sit in between the models that are commonly 
associated with statistics and ML that are often overlooked, especially in 
the field of Data Science (I am in that field, and this comment is not meant 
to disparage Data Scientists). Many times in my career, I have seen a new 
analyst quickly abandon a regression-based model for an eXtreme Gradient 
Boosted (XGBoost) or neural network model the moment that performance 
is inadequate or the regression assumptions are violated. Confession time: I, 
too, have been guilty of this in my early career. A generalized additive model 
(GAM), for example, is, in my opinion, an often-overlooked model that has 
the benefit of interpretability, like that of linear or logistic regression, but also 
gracefully handles non-linearity between the independent and dependent 
variables.

Another argument for interpretable methods revolves around gaining buy-
in from the clinical and non-technical stakeholders. I have witnessed projects 
fail in a nanosecond due to analysts attempting to explain the incredible wiz-
ardry of their ensemble model to physicians, only to be received by blank 
stares. While your deep reinforcement learning model with gradient-based 
hyperparameter optimization may result in an optimal k-fold cross-validated 
mean squared error, it is worthless if it is never implemented to improve 
the quality of care and drive root cause improvement. Projects that can be 
explained to stakeholders are more likely to be supported by leadership and 
adopted by the consumers of those models.

Most problems encountered in everyday analysis can be approached with 
direct statistical methods. We should exhaust these options before leaping to 
more advanced ML/AI methods. Models such as XGBoost tree models and 
convolutional neural networks certainly have their place in healthcare, and 
I use ML in my work; however, if the goal is to explain to the Chief Nursing 
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Officer of a major health system the drivers behind increased central line-
associated bloodstream infection (CLABSI) occurrences or interpret the rela-
tionship between age and hemorrhage risk in delivering mothers, it will be 
difficult to gain trust and buy-in without clearly stated interpretable results 
with transparency around the estimated error in the data.

It would be nearly impossible to provide an overview of healthcare, sta-
tistics, and R and Python programming from the ground up. Given that the 
primary audience of this book is a recent graduate or an individual tran-
sitioning into a healthcare analysis role, I will assume that the reader has 
taken an introductory statistics course or has a fundamental knowledge of 
descriptive statistics. The reader should know what a mean, median, stan-
dard deviation, and percentile are and have a working knowledge of basic 
data types such as discrete and continuous quantitative data and nominal 
and ordinal qualitative data.

I will also assume that the reader is a beginner in Python or R, at a mini-
mum. We will not discuss setting up a development environment or using 
the many IDEs available. Furthermore, no crash course on Python or R pro-
gramming is provided in these pages. There are many well-written resources 
for those beginning Python and R-based data analysis, and duplicating those 
efforts here would take away from the healthcare-focused analysis this book 
is designed to provide. Finally, this book will not discuss data “munging” or 
data processing to prepare analytic datasets. There are a multitude of books 
on data analysis using Python or R, and it is advised that readers seek those 
resources for foundational knowledge on data analysis.

We will use code only as a means to an end and will use the core data 
manipulation and statistical packages when possible. In Python, exam-
ples primarily use pandas, NumPy, statsmodels, scipy.stats, and 
scikit-learn. In R, we will use core base R functions when possible 
and will rely on mature, well-supported libraries when no base R support 
is available (e.g., mcgv, lme4, survival). The examples provided will be 
procedural (for ease of reproducibility) using arrays and data frames, and as 
such, we will avoid examples using object-oriented approaches.

Techniques will be demonstrated with small self-contained reproducible 
examples (or “reprex”, as our friends at Posit say). For each coding example, 
I’ve tried to follow a consistent pattern where a small data frame of mock data 
is created in-line prior to the demonstration of the technique. This allows the 
examples to be executed without dependencies on outside datasets. There 
are admittedly tradeoffs with this approach, as in-line data generation limits 
the volume of that data and the potential sophistication of the example. That 
said, I prefer to work with small toy examples such as these, knowing there 
are some disadvantages with this approach.

While this book is designed such that each chapter builds on the chap-
ters before it, I’ve tried to minimize the dependencies so that the reader 
can read each chapter or group of chapters in isolation. Those interested in 
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foundational healthcare data might read Chapters 1 and 2, where an over-
view of healthcare data sources, standards, and industry measures are dis-
cussed. Chapters 2–5 will focus on foundational statistical methods ranging 
from hypothesis testing to regression analysis. Chapters 7–9 will focus on 
techniques common within epidemiological research, including risk stan-
dardization, measures of disease frequency and association, and time-to-
event analysis (a.k.a. survival analysis).

I hope you find the information in this book useful as you embark on your 
career as an analyst in the healthcare field. I remained in a constant state of 
anxiety as I wrote this book, always worried that I was overexplaining or 
underexplaining a particular concept or idea. I felt guilt for excluding impor-
tant topics and hesitated including others. This book is, after all, a product 
of my career, experiences, and education, and in this first edition, I’m sure 
there is room to improve. I welcome your feedback as you read this book and 
can be reached at mikes_stat_book@protonmail.com. I would be glad to hear 
what aspects of the book you enjoyed and where you believe improvement 
can be made. Please reach out!
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1
An Overview of Healthcare Data

Background

When conducting healthcare analyses, we often start with a particular research 
question or business problem. Perhaps we’re interested if patients diagnosed 
with depression have a decreased risk of readmissions when administered 
certain antidepressants compared to those undergoing counseling. To con-
duct this analysis from a tactical perspective, we would need standardized 
identifiers for medications (antidepressants), diagnoses (depression), ser-
vices (counseling), and for patients themselves (to identify readmissions) so 
that the data is consistent across providers. How such concepts are classified 
can vary considerably depending on the data sources used in our analyses.

Healthcare data is notoriously fragmented and siloed. Each data source 
has distinct advantages and drawbacks, and the ideal dataset containing a 
complete narrative of a patient’s entire healthcare journey across care set-
tings and payers remains challenging.

In this chapter, we’ll discuss the primary data sources available for health-
care analysis. Staying true to the book’s scope, as defined in the preface, we’ll 
focus on data centered around the patient—emphasizing data sources that 
store patient clinical and demographic information and the resulting care 
provided to them by the healthcare professional. In my experience, the most 
effective researchers, analysts, statisticians, and data scientists have an inti-
mate understanding of their domain and pesky nuances specific to their 
datasets. So much of the modeling exercise involves accurate collection and 
preparation of variables in a way that is most appropriate for the employed 
statistical model. In my opinion, domain expertise and a firm grasp of the 
data are just as important as having strong statistical chops.

We can classify patient data into two major groups: EHRs and admin-
istrative records. Both data sources capture a wide range of information 
about the patient encounter, including demographic information, diagno-
ses, procedures, medications, lab tests, imaging, and services. While there 
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is considerable overlap in information between the two data sources, each is 
unique and has advantages and disadvantages. A quick reference outlining 
the data sources discussed here can be found in (Table 1.1).

(Continued)

TABLE 1.1

Common Healthcare Standards for Storing Clinical and Administrative Data

Standard Description Maintainer

Administrative EHR

UB-04 
Inpatient

UB-04 
Outpatient 1500

HL7-
CDA

ICD-10-CM Diagnoses Centers for 
Disease 
Control and 
Prevention’s 
(CDC) 
National 
Center for 
Health 
Statistics 
(NCHS).

x x x

ICD-10-PCS Procedures Centers for 
Medicare and 
Medicaid 
Services (CMS)

x

UB-Revenue 
Codes

Billable items National 
Uniform 
Billing 
Committee 
(NUBC)

x x

CPT-4 Procedures 
and other 
physician 
services

American 
Medical 
Association 
(AMA)

x x

HCPCS Extends CPT-4 
with non-
physician 
services, 
medications, 
equipment, 
and supplies

Centers for 
Medicare and 
Medicaid 
Services (CMS)

x x

NDC Drug 
products by 
manufacturer

U.S. Food 
and Drug 
Administration 
(FDA)

x x x
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Administrative Data

Hospital administrative data includes a wide range of standardized informa-
tion about the patient encounter, including transitions to and from the set-
ting of care, demographic information (age, sex, etc.), patient diagnoses and 
procedures, and billed services and items. Administrative data is collected 
primarily for billing purposes and can be used to submit claims to payers 
for reimbursement. Each payer (e.g., Medicare, Medicaid, Cigna, Aeta) has 
their own requirements specific to the care setting. Medicare, for example, 
requires hospitalizations to be submitted using a Uniform Billing 04 (UB-04) 
form and physician offices to be submitted through a 1500 claim form. Data 
will be extracted from administrative databases to generate a claim in the 
format required by the payer.

The UB-04 claim form (also known as the 1450 form) stores informa-
tion about care provided within hospitals and other institutional facilities 
(e.g., skilled nursing and rehab facilities). Although it is a paper form, most 

Standard Description Maintainer

Administrative EHR

UB-04 
Inpatient

UB-04 
Outpatient 1500

HL7-
CDA

SNOMED-CT Defines 
hierarchy and 
relationships 
across a 
wide range 
of clinical 
concepts 
(including 
diagnoses)

SNOMED 
International

x

LOINC Defines 
laboratory 
and other 
clinical 
observations

The Regenstrief 
Institute with 
support by the 
U.S. National 
Library of 
Medicine 
(NLM)

x

RXNORM Medications 
and drugs

The National 
Library of 
Medicine 
(NLM)

x

TABLE 1.1  (CONTINUED)
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hospitals transmit claims using the electronic 837I (I = Institutional) format. 
Bear with me, as I know we are approaching terminology overload.

The CMS 1500 claim form, on the other hand, records information about 
services rendered in a physician’s office or outpatient clinic. Like the UB-04 
form, it contains patient demographic and clinical information, including 
diagnoses, services, and procedures. The 1500 form is also paper; however, 
many physician offices use the 837P (Professional) format to transmit claims 
electronically.

Given the scope of this book, I will note that a comprehensive review of the 
hospital billing process and the varying data elements across data sources 
is not possible. Volumes of technical manuals are available online for those 
with a much higher pain threshold than me. We will cover what I feel are 
key data elements often used within healthcare analyses as they relate to the 
quality and efficiency of patient care. That said, let’s discuss the primary data 
standards typically used to codify clinical information within administrative 
data across the UB-04 and 1500 forms.

Diagnoses

From a data perspective, a patient has one primary reason for seeking care, 
captured as a primary or principal diagnosis and, as such, only one princi-
pal diagnosis can be recorded on the patient claim. Along with the principal 
diagnosis, a patient can have multiple secondary diagnoses—peripheral con-
ditions related to the patient’s encounter. Secondary diagnoses are further 
qualified with a present-on-admission (POA) code, indicating if the condi-
tion was present on admission or if occurring while in the hospital. The POA 
status is mainly used in the inpatient setting and is especially helpful when 
attempting to distinguish preexisting comorbidities from complications that 
might have resulted from patient care.

Diagnoses are recorded using the International Classification of Diseases 
(ICD) codes, a coding system integral to healthcare statistics. This discus-
sion will focus on ICD version 10 (ICD-10) codes implemented in the United 
States in October 2015. Compared to its predecessor, the ICD-9, the ICD-10 
system is much more robust and has greater breadth and depth.

The ICD-10 Clinical Modification (ICD-10-CM) family of codes specifi-
cally defines patient diagnoses. These codes are rich in detail, allowing for 
a comprehensive representation of a patient’s condition. ICD-10-CM codes 
can range from 3 to 7 characters in length, with the first three positions of the 
code denoting the broader disease category. The subsequent four positions 
provide additional information that further qualifies the diagnosis, includ-
ing details about the disease’s site, severity, and etiology (cause). Diagnosis 
codes can be spliced and truncated to define a group or cross-section of diag-
noses across codes.
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For example, consider ICD-10 code S83.511A, which denotes a sprain of 
the right knee’s anterior cruciate ligament. This code goes beyond just iden-
tifying a sprain by specifying the location (right knee) and specific ligament 
(anterior cruciate) related to the injury; it further stipulates that this injury 
is the first encounter (first occurrence). This level of detail is important for 
healthcare statisticians and researchers to define narrow cohorts for specific 
research questions. For example, ICD-10 codes classifying injuries related to 
the knee and lower leg will be prefixed with codes ranging from S80 to S89. 
We can drill down further to evaluate only sprains of the cruciate ligament 
of the knee by evaluating S83 codes. Figure 1.1 shows the levels of specificity 
for ICD-10-CM code S83.511A, with each digit further qualifying the diagno-
sis with additional details.

The CMS official guidelines for coding and reporting contain all the gory 
details (and there are a lot of details) about ICD coding, a punishment 
reserved only for the highest order of healthcare nerds.

Procedures and Other Services

In a hospital setting, the ICD-10 Procedure Coding System (ICD-10-PCS) 
is used to classify medical procedures and services, specifically for UB-04 
claims. Despite sharing a similar name with ICD-10-CM codes for diseases, 
ICD-10-PCS serves a different purpose and has its own unique structure.

As shown in Figure 1.2, ICD-10-PCS codes consist of seven alphanumeric 
characters, each representing a distinct aspect of the procedure. For example, 
the first character categorizes procedures into broad groups, while the sec-
ond character specifies the anatomical system or body part involved in the 
procedure, facilitating research on procedures related to specific anatomical 
systems. Perhaps the physician used ICD-10-PCS code 0SQC4ZZ to indicate 
a repair of the right knee joint using an endoscopic approach. We can see in 

FIGURE 1.1
ICD-10 positional components for S83.511A, indicating a sprain of the right knee’s anterior cru-
ciate ligament.
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Figure 1.2 the role of each character in the procedure code in adding degrees 
of specificity related to the procedure.

A related coding system is Current Procedural Terminology Version 4 
(CPT-4), not ICD-10-PCS, which defines a comprehensive range of healthcare 
services and procedures for private and public payers in the outpatient and 
physician office settings.

CPT-4 codes are represented by a five-digit code ranging from 00100 to 
99499 and are categorized based on the type of procedure or service and 
the relevant anatomical area. Perhaps a patient has a wart removed from 
their left pinky finger (definitely not talking about myself here), a procedure 
that would likely be coded with CPT code 17110. This code falls within the 
broader set of codes related to surgery of the integumentary system. There 
are two other CPT categories (category II and category III). Category II codes 
are alphanumeric codes used for performance measurement. These codes are 
often optional and are not necessary for accurate coding. Category III codes 
are temporary alphanumeric codes for emerging technology, procedures, 
and services. The lion’s share of coding will occur within the first category 
of CPT.

CPTs are assigned relative value units (RVUs), which are used to determine 
payment as part of the MPFS and other private payer models to reimburse 
physicians for professional services such as those conducted in the physician 
office setting.

Non-Physician Services

The Healthcare Common Procedure Coding System (HCPCS) was developed 
by CMS to capture a broader range of services extending beyond the physi-
cian services coded in the CPT-4 standard. As such, there are two levels to 
HCPCS. The first, HCPCS Level I, is simply the CPT-4 coding system, while 
the second, HCPCS Level II, includes additional codes for non-physician ser-
vices, medications, equipment, and supplies.

FIGURE 1.2
Positional components for ICD-10-PCS code 0SQC4ZZ, indicating the repair of a right knee joint 
using the percutaneous endoscopic approach.



An Overview of Healthcare Data� 7

For example, ambulance and other transport services are captured in the 
A0021 to A0999 range of HCPCS II codes. Within that range, code A0998 
indicates an ambulance response and treatment but without transporting the 
patient.

Revenue Codes

Revenue codes are standardized four-digit numeric codes used in UB-04 data 
to categorize various services, procedures, and supplies provided by health-
care facilities. These codes are primarily used for billing and reimbursement, 
as they help healthcare payers, such as Medicare, Medicaid, and private 
insurance companies, understand the types of services and items rendered 
to patients to determine accurate payment allocation.

Revenue codes convey information such as service categories, locations, 
levels of care, pharmacy items, laboratory tests, therapeutic treatments, sup-
plies, blood products, psychiatric care, home health services, hospice care, 
durable medical equipment, rehabilitation, emergency care, and miscella-
neous items. Revenue code 0361, for example, indicates that an operating 
room is utilized for minor surgery.

Drugs and Medications

National Drug Codes (NDCs) are unique identifiers for drugs and medi-
cations in the United States and are maintained by the Food and Drug 
Administration. NDC codes are typically 11 digits in length and are com-
prised of three components—a four-digit labeler code indicating the drug 
manufacturer, a five-digit product code indicating the strength, dose, and 
drug formulation, and finally, an optional two-digit package code indicat-
ing the package type and size. This is often referred to as a 5-4-2 structure 
(labeler code, product code, and package code). Let’s look at the NDC 5-4-2 
code structure for citalopram, a drug widely used to treat depression. There 
are several citalopram manufacturers, each with its own NDC labeler code. 
The two-digit package code is often excluded if we are just interested in the 
labeler/product code combination. For example, the drug code for citalo-
pram, under the labeler of Allergan, is 0456-4010. This is a manufacturer-spe-
cific code for citalopram, marketed as Celexa by Allergan. If we append the 
two-digit package suffix, we would be referring specifically to a bottle of 
100 Celexa film-coated tablets. As shown in Figure 1.3, each part of the NDC 
code further qualifies the product.

While the NDC code serves as a standardized way to identify drugs and 
medications uniquely, it is a code specific to the product and not centered 
around the particular nature of the drug. To identify a drug (opioids, for 
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example) across manufacturers, the researcher would need to identify the list 
of NDCs across manufacturers to capture all administered opioids. We’ll see 
in the next section that mappings (or crosswalks) exist to facilitate this type 
of analysis.

Electronic Health Records

As found in the UB-04 and 1500 forms, administrative data is highly stan-
dardized for billing and administrative purposes. However, it is mainly lim-
ited to data needed for billing and quality improvement. As a result, clinical 
information unrelated to the billing process will not be recorded in adminis-
trative data. The EHR is the upstream source system used by clinical coders 
to codify diagnoses, procedures, and other patient information for admin-
istrative databases. This system contains the granular clinical details of a 
patient encounter.

EHR data is transactional in nature, reflecting the dynamic nature of 
patient care. Each interaction with a healthcare provider generates new data 
entries, resulting in a continuous stream of information. This transactional 
nature is well-suited for clinical decision-making and real-time patient care 
but requires aggregation and structuring when conducting patient-level 
analyses or extracting information over extended periods.

The EHR is notably less standardized than administrative data but is a 
much richer data source. To address challenges related to interoperability 
and standardization across EHR systems, healthcare institutions employ 
Health Level Seven Clinical Document Architecture (HL7 CDA) stan-
dards for data exchange. HL7 CDA is a flexible XML (Extensible Markup 
Language) specification that serves as a bridge between health databases by 
providing a uniform format for the exchange of clinical documents. While 
HL7 facilitates interoperability, variations in EHR implementations and 
local configurations can still introduce challenges in achieving proper data 
standardization.

FIGURE 1.3
Positional components for NDC code 0456-4010-01, indicating a bottle of 100 Celexa film-coated 
tablets manufactured by Allergan, Inc.
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The HL7 CDA messaging structure uses several industry standards to cap-
ture clinical information such as diagnoses, procedures, orders, results, and 
medications. Thus, it provides a standard specification and data structure 
for transmitting established coding systems and hierarchies. In the following 
sections, we’ll focus on some of the more salient coding systems used within 
the HL7 CDA format.

SNOMED CT

The Systematized Nomenclature of Medicine—Clinical Terms (SNOMED 
CT) is an ontology that provides a formal representation of clinical knowl-
edge by defining concepts and relationships within the medical domain. 
It further includes a hierarchy of clinical concepts and specifies how they 
relate, making it an incredibly flexible and valuable tool for healthcare sys-
tems to represent and share medical knowledge. SNOMED CT is massive as 
it includes a comprehensive and highly detailed clinical terminology system 
and provides a standardized way to describe the relationship between clini-
cal information, including diseases, findings, procedures, and more.

We’ve been using the term “standards” loosely in this chapter, but it will be 
necessary to clarify some terminology before proceeding to the next section. 
Specifically, we should define two key terms—ontologies and taxonomies.

In healthcare, ontologies are formal, structured representations of complex 
domain knowledge that define the semantic relationships among medical con-
cepts. The domain knowledge is inherent in the structure of the ontology. For 
instance, an ontology not only describes the concept of “cardiovascular dis-
ease” but may also define its disease subtypes, related risk factors, and the 
intricate connections between them.

Taxonomies, on the other hand, are hierarchical classification systems used to 
categorize medical terms, diseases, or procedures at different levels of aggrega-
tion. An example of a healthcare taxonomy is the International Classification of 
Diseases (ICD), which categorizes and codes various diseases and medical condi-
tions for consistent record-keeping and billing purposes.

Regarding the standards discussed in this book, ICD-10-CM, ICD-10-PCS, 
UB-Revenue Codes, CPT-4, HCPCS, NDC, LOINC, and RXNORM are tax-
onomies used for categorizing and coding various aspects of healthcare, while 
SNOMED-CT is an ontology that represents clinical concepts and their seman-
tic relationships in a more comprehensive manner.
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If we examine the clinical concept of diabetes mellitus in the SNOMED 
ontology, we can see that the disease is part of a larger disease hierarchy.

Disorder of body site → disorder of body system → disorder of endocrine 
system → diabetes mellitus

Note that within SNOMED-CT, a disease might fall within multiple disease 
hierarchies. Just as diabetes mellitus has multiple “parents” in the hierarchy, 
it can have multiple “children” in the hierarchy as well (e.g., Types I and II).

Within SNOMED, we not only have an understanding of the various clas-
sification levels for the disease, but we also have access to rich information 
about the relationship between the concept and other clinical concepts. For 
example, SNOMED-CT provides information regarding associated condi-
tions, underlying conditions, the finding site (part of the body), risk factors, 
and disease synonyms.

LOINC

Logical Observation Identifiers Names and Codes (LOINC) is a coding sys-
tem primarily used for laboratory and clinical observations. It standardizes 
the names and codes for a wide range of laboratory tests, measurements, 
and clinical observations. Within HL7 CDA, LOINC codes are commonly 
used to represent laboratory results and observations. A LOINC code, for 
example, can specify a particular blood test or a clinical measurement like 
blood pressure.

These codes often capture a question/answer relationship for a medical 
concept. A physician might order a COVID-19 test for a patient. The LOINC 
code would be responsible for defining the question, “Does this patient have 
COVID-19?” in the form of LOINC code 94558-4. As shown in Figure 1.4, 

FIGURE 1.4
LOINC Code 94558-4 indicating a COVID-19 test.
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a LOINC code is uniquely defined by six parts: component, property, time, 
system, scale, and method.

LOINC 94558-4 tells us that we are conducting a SARS coronavirus two 
antigen test (component) and that the unit of measurement is an ordered cat-
egorical scale (property) from a point-in-time measurement (time). We also 
know that the test concerns the respiratory system (system), and its result 
will be expressed on an ordinal scale (scale) using the rapid immunoassay 
method (method).

While LOINC code 94558-4 is a question (does this patient have COVID-19?), 
the answer is represented by another LOINC list code, LL2021-5, which 
defines a list of positive, negative, or invalid answers. Note that while the list 
of possible answers is defined as LL2021-5, the answer values for positive, 
negative, and invalid are also assigned their own LOINC code of LA6576-8, 
LA6577-6, and LA15841-2, respectively.

RxNorm

RxNorm is a standardized terminology system specifically designed to iden-
tify medications and drugs and used within the HL7 CDA specification. It 
provides codes and names for clinical drugs, including generic and brand 
names, strengths, and forms. Unlike NDC codes, RxNorm codes include 
information about drug classes and relationships between different drug 
entities.

Drugs and medications within RxNorm are identified by an Rx Concept 
Unique Identifier (RxCUI) code, made unique through the combination 
of the active ingredient, strength, and dosage form. These components 
can be seen in the RxCUI standardized description and will take the form 
<drug><strength/dose><dosage form>. RxNorm also contains one-to-many 
mappings from an RxCUI to NDC code, allowing the user a homogenous 
definition of a drug across NDC codes.

In the section on NDC codes, we defined Celexa (generic citalopram) 
10 mg tablet as NDC 0456-4010-01. An equivalent code of the RxNorm 
system is RxCUI code 284591. Within the RxNorm system, we not only 
identify this drug as a citalopram 10 mg tablet, but we also know that the 
active ingredient is citalopram, which is part of the drug class of selec-
tive serotonin reuptake inhibitors (SSRIs). The description of the RxCUI 
284591 is citalopram 10 mg oral tablet, in compliance with the standard-
ized format (Figure 1.5).
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RxNorm is centered around the drug rather than the product (as with 
NDC codes). As such, it helps identify drugs based on their active ingredient 
across manufacturers and dosage forms. It further allows the researcher to 
understand how drugs relate to the broader classification.

Other Healthcare Data Sources

While we’ve touched on some common sources and data formats used to 
capture patient-centered data, it will be helpful to touch on some tangential 
data sources that are important for healthcare analyses.

Hospital Information

When conducting healthcare analyses, we are often interested in struc-
tural information about the hospital where care was provided. For exam-
ple, we might be interested in whether a teaching or academic hospital 
generally provides higher-quality care for COPD patients than non-
teaching or academic facilities. The number of beds, its location, whether 
urban or rural, or access to equipment could better inform our patient-
level analysis.

Various organizations provide hospital information, but we’ll discuss two 
of the most notable here.

Centers for Medicare and Medicaid Services (CMS)

Any hospital that accepts Medicare insurance (nearly all hospitals) will be 
assigned a CMS certification number (CCN). The CCN is a six-digit number 
with the first two digits representing the U.S. state or territory and the last 
four digits representing the type of facility (e.g., psychiatric, rehab, skilled 
nursing facility, short-term hospital). CMS provides a wide range of datasets 
related to quality and payment. A few worth noting are the CMS cost report, 
the CMS IPPS Impact file, and the CMS Care Compare database.

FIGURE 1.5
RxCUI code 284591 indicating a Citalopram 10 mg oral tablet.
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The CMS Cost Report is a financial document submitted by healthcare pro-
viders participating in the Medicare and Medicaid programs. While these 
reports are an essential part of the CMS reimbursement process, they are 
also an excellent source for obtaining hospital-level information, including 
the location, types of beds and their respective bed counts, number of dis-
charges, income, and total staff salary cost (​https://​data.​cms.​gov/​​provider-
compliance/​​cost-report/​hospital-​​provider-​cost-​report/data).

The CMS Impact file drives Medicare payment and includes 
rich information about a hospital, including ownership status, case mix, 
region, hospital type, beds, and census (https://www.cms.gov/medicare/
payment/prospect ive-payment-systems/acute- inpat ient-pps/
fy-2024-ipps-final-rule-home-page).

The Care Compare data catalog includes rich databases across many care 
settings. Here, one can find a wide range of quality and efficiency measures 
for hospitals, physician offices, and other care settings. In many of these 
databases, CMS consolidates data from disparate agencies so that informa-
tion about an organization’s performance is centrally located.

American Hospital Association (AHA)

The AHA surveys hospitals and other healthcare organizations with detailed 
questionnaires, collecting data on hospital operations, finances, staffing, 
services offered, and more. The AHA survey captures beyond what can be 
found in the CMS data sources. For example, through the AHA data, we 
identify hospitals that have a fertility clinic, conduct robotic surgery, or pro-
vide chemotherapy treatment (https://www.ahadata.com/system/files/
media/file/2023/09/AHA-Annual-Survey.pdf).

Physicians and Organizations

The National Provider ID (NPI) from the CMS National Plan and Provider 
Enumeration System (NPPES) is perhaps the most well-known identifier for 
physicians and organizations. NPI codes are ten-digit codes grouped into 
individuals (I) or organizations (O), each with information specific to that 
entity type. NPIs can uniquely identify individuals and organizations across 
payers and care settings and are helpful in understanding a patient’s interac-
tion with a care provider throughout their care episode.

The NPI data includes high-level information about the provider and up 
to 15 standardized specialties (which the NPPES refers to as taxonomies). Of 
the 15 possible specialties, only one is identified as a primary specialty. NPI 
codes can be found within administrative data and EHR systems and are the 
most universal identifier for care providers.

https://data.cms.gov/provider-compliance/cost-report/hospital-provider-cost-report/data
https://data.cms.gov/provider-compliance/cost-report/hospital-provider-cost-report/data
https://www.cms.gov/medicare/payment/prospective-payment-systems/acute-inpatient-pps/fy-2024-ipps-final-rule-home-page
https://www.cms.gov/medicare/payment/prospective-payment-systems/acute-inpatient-pps/fy-2024-ipps-final-rule-home-page
https://www.cms.gov/medicare/payment/prospective-payment-systems/acute-inpatient-pps/fy-2024-ipps-final-rule-home-page
https://www.ahadata.com/system/files/media/file/2023/09/AHA-Annual-Survey.pdf
https://www.ahadata.com/system/files/media/file/2023/09/AHA-Annual-Survey.pdf
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Social and Environmental Data

Often, the data available within the patient databases (EHR or administra-
tive) do not capture the breadth of data needed for our analysis. There are 
cases where we are interested in more information about the patient’s social 
and environmental circumstances of the patient. In these cases, we must seek 
outside datasets to extend the patient-centered data.

Given that this topic is moving beyond healthcare to a broader dataset 
about specific geographic regions, there will be countless data sources that 
may be useful, and their relevancy will depend on the particular research 
question. We might be interested in crime statistics, environmental issues 
(such as air and water quality), socioeconomic status data (such as income 
and home value), or economic data (cost of living, wage indices, etc.).

Of the many datasets we could discuss, those related to social drivers (or 
determinants) of health SDoH are perhaps the most salient. SDoH refers to 
the social, economic, and environmental factors that influence a person’s 
overall health and well-being. These determinants can significantly impact an 
individual’s healthcare access, risk of developing certain health conditions, 
and overall quality of life. A few of the most notable data sources include the 
CDC Agency for Toxic Substances and Disease Registry Social Vulnerability 
dataset, the AHRQ SDoH dataset, the Area Deprivation Index (ADI), and the 
Minority Health Social Vulnerability dataset from the Health and Human 
Services Office of Minority Health. A broader, more expansive dataset is the 
Area Health Resource File, which contains consolidated information sourced 
across many organizations and domains. Studies have shown that variation 
in quality is often partially explained by circumstances outside of the hospi-
tal, so adjusting for factors related to a patient’s environment can often help 
produce more accurate statistical analyses. Resources for these datasets can 
be found at the end of this chapter.
While we discussed some of the most used data sources in healthcare 
research, it is far from a comprehensive list. Hospitals and third-party orga-
nizations collect patient survey data on their health, lifestyle, or satisfaction 
with their care provider. There are disease registries—specialized databases 
designed to track specific diseases, such as cancer or diabetes, and to monitor 
prevalence and outcomes. Vital statistics databases contain birth and death 
certificates, demographic information, and cause-of-death information. 
Remote health monitoring devices and telehealth visits store real-time health 
information.

Public Use Datasets

Various research databases containing administrative or EHR data are 
available online, for free or for a fee. Rather than listing the many data 
sources here, I’ll direct readers to a resource from John Hopkin’s Welch 
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Medical Library that catalogs several useful databases. Of special note 
are the HCUP National Inpatient Sample (NIS) and MedPAR databases, 
which are rich sources of administrative data regularly used in research 
and publications.

Additional Resources

AHRQ SDoH Database. https://www.ahrq.gov/sdoh/index.html
Area Deprivation Index. https://www.neighborhoodatlas.medicine.wisc.edu/
CDC/ATSDR Social Vulnerability Index. https://www.atsdr.cdc.gov/placeand 

health/svi/index.html
HCUP Databases. https://hcup-us.ahrq.gov/databases.jsp
HHS Area Health Resource File. https://data.hrsa.gov/topics/health-workforce/

ahrf
MEDPAR. https://www.cms.gov/data-research/files-for-order/limited-data-set- 

lds-files
Minority Health SVI. https://www.minorityhealth.hhs.gov/minority-health-svi/

https://www.ahrq.gov/sdoh/index.html
https://www.neighborhoodatlas.medicine.wisc.edu/
https://www.atsdr.cdc.gov
https://www.atsdr.cdc.gov
https://hcup-us.ahrq.gov/databases.jsp
https://data.hrsa.gov/topics/health-workforce/ahrf
https://data.hrsa.gov/topics/health-workforce/ahrf
https://www.cms.gov/data-research/files-for-order/limited-data-set-lds-files
https://www.cms.gov/data-research/files-for-order/limited-data-set-lds-files
https://www.minorityhealth.hhs.gov/minority-health-svi/
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2
Healthcare Measures

Measurement in healthcare is deceivingly complicated. Let’s consider the 
great diversity of human illness (both mental and physical), the range of 
care settings in which a patient can receive care, and the numerous stake-
holders (patients, physicians, hospitals, regulatory agencies, and payers). It 
should not be surprising that there are, quite literally, thousands of health-
care measures designed to measure various aspects of care. In this chapter, 
we’ll discuss key components of measure development, followed by a dis-
cussion of standard industry measures and measure sets used in healthcare 
statistics.

Measure development is critical to healthcare statistics, as statisticians 
and data scientists are often tasked with developing measures specific 
to a targeted research area. This process can be challenging, and there 
are many pitfalls. To create a measure, we must first determine what 
we are measuring. Typically, healthcare measures are grouped into five 
main categories: outcomes, process, patient experience, efficiency, and 
structural.

Types of Measures

Let’s take a closer look at each of these categories.

Outcome Measures

Outcome measures are perhaps the most prolific measures in healthcare, 
as they capture the potential adverse results of patient care. This group 
includes measures such as mortality, readmissions, and complications. 

http://dx.doi.org/10.1201/9781003609759-2


Healthcare Measures� 17

Additional measures such as patient cost or length of stay are often referred 
to as outcome measures but are primarily designed to measure the effi-
ciency of care. Outcome measures are also some of the most challenging to 
develop, as the expectation of an outcome will vary based on the patient’s 
unique clinical and demographic characteristics. We would certainly expect 
an 87-year-old man with severe osteoarthritis and type II diabetes, for exam-
ple, to be more prone to pressure ulcers (bed sores) than a 23-year-old male 
with no chronic conditions. Therefore, in developing outcome measures, it 
is important to “risk adjust” or “risk standardize” the measures to account 
for patient characteristics that might affect our expectation of an outcome. 
We discussed this topic in greater detail in the chapter on standardization; 
however, for now, recall that most risk-adjusted measures are designed to 
compare some observed event (e.g., a complication) to an expectation of the 
event based on the patient’s characteristics. When evaluating the outcomes 
for a patient population, the total number of observed events (e.g., total 
pressure ulcers) is compared to the total number of expected events (e.g., 
the total number of pressure ulcers that we would expect from the evalu-
ated population) in the form of a ratio. This ratio is typically abbreviated as 
an O/E. O/E ratios greater than 1 indicate more cases than expected, given 
the evaluated patients, while O/E ratios less than 1 indicate fewer cases 
than expected. Risk standardized measures such as those expressed as an 
O/E ratio are designed to fairly compare performance across physicians, 
facilities, and other levels of data so that they are not unfairly penalized for 
having adverse events beyond those expected, given the unique nature of 
the patient population.

Mortality

Mortality, or death, is perhaps the most prominent measure in healthcare 
analysis, as it is the ultimate outcome that patient care is designed to prevent. 
Incidence of mortality can be measured as inpatient mortality or episodic 
mortality. In the former case, mortality is identified if it occurs during the 
inpatient stay. This is a direct measure and more immediate measure of mor-
tality, and given that the event is recorded within the scope of the encounter, 
it is typically a more reliable measure. For example, within administrative 
data, we can identify mortality through a standardized discharge status, and 
within the EHR, it is recorded through the date of death. A drawback of the 
inpatient mortality measure is that it does not capture potential deaths that 
occur after the patient is discharged. Hospitals that prematurely discharge 
patients without the most complete care might have higher rates of mortality 
within an episode but lower mortality within the inpatient setting. Therefore, 
mortality is often measured as 30-day mortality (sometimes longer), using 
additional data (such as Medicare enrollment data or vital statistics) to iden-
tify death outside of the hospital. While 30-day mortality is a more complete 
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measure from a care perspective, it can be challenging to calculate from a 
data integration perspective.

Standard industry mortality measures are the Yale Center for Outcomes 
Research & Evaluation (CORE) 30-day risk-standardized mortality measure 
and the AHRQ inpatient mortality measure set, which includes Inpatient 
Quality Indicators (IQIs) specific to certain medical and procedure groups.

Readmissions

Readmission measures refer to patients returning to the hospital after dis-
charge—a sign of potentially incomplete care from the previous stay. With 
readmissions, an “index visit” is identified, which marks the beginning of an 
episode. Typically, readmissions are measured within 30 days (like mortal-
ity) but can be evaluated within 60 or 90 days, depending on the research 
question. There are many nuances to a robust readmissions measure. For 
example, processing steps might be taken to ensure that only one readmis-
sion is counted if a patient is admitted multiple times within the evaluated 
episode (e.g., 30 days).

Additionally, a distinction between planned and unplanned readmissions 
might be made within the measure definition. Arguably, a COVID-19 patient 
discharged from an ICU but returning two weeks later with a broken hip is 
not an indicator of suboptimal care (unless there was an adverse drug event 
from the previous stay, for example). Entire industry algorithms exist to dis-
tinguish planned and unplanned readmission.

As with 30-day mortality, calculating readmissions can be challenging 
from a data perspective. Hospitals attempting to calculate readmissions 
using their own data will be blind to readmissions occurring outside the hos-
pital. A patient discharged from one facility (or system) may be readmitted 
to a competing hospital in the same region. Depending on hospital market 
share, readmission rates can vary (regardless of quality). A small rural hos-
pital might be the only hospital in their area and will receive almost all read-
missions to their hospital.

In contrast, an urban hospital in a population-dense region might experi-
ence a greater proportion of readmissions outside the scope of its data. Such 
issues with data linkage are discussed later in this chapter in the section on 
patient identifiers. Yale CORE also calculates 30-day risk-standardized read-
mission measures used within various publicly regulated programs.

Complications

Complications might be the most complex measure to evaluate. They can 
be calculated within administrative data or through the EHR, and industry-
standard measures have been developed for both data sources. For example, 
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the National Healthcare Safety Network (NHSN) calculates various health-
care-associated infections (HAIs) using data sourced directly from the EHR, 
which CMS publicly reports. Examples of these measures include incidences 
of Methicillin-resistant Staphylococcus aureus (MRSA), Clostridioides dif-
ficile (C. diff), infections related to central lines and catheters, and surgi-
cal site infections. Industry complication measure sets using administrative 
data include the AHRQ Patient Safety Indicators, CMS Hospital Acquired 
Conditions, and the Yale CORE episodic complication measures.

Complications are incredibly diverse and are often grouped into medical 
and surgical categories. Surgical complications might include accidental cuts 
and lacerations during surgery or a surgical instrument left within the patient 
after surgery. Examples of medical complications include various types of 
wound infections, adverse drug events, and accidental falls. Complications 
represent many facets of care and require nuanced inclusion and exclusion 
criteria. We should not reward physicians for having zero accidental punc-
tures, for example, when they do not conduct surgeries.

Similarly, a hospital ward that does not use central lines should not 
be rewarded for having zero central line-associated bloodstream infec-
tions (CLABSIs). Furthermore, a physician should not be penalized for a 
catheter-associated urinary tract infection (CAUTI) identified on the first 
day of a patient’s stay, as the bacterial infection could not have been cul-
tured in one day (indicating that it was present on admission). When con-
structing individual complication measures, it is important to identify 
clinically relevant patients and the conditions specific to the complication 
being evaluated.

Process Measures

Process measures are designed to measure consistency with evidence-based 
practices. One of the most well-known process measures evaluates aspirin 
administration on arrival for AMI patients. This measure is part of a set of 
“core measures” defined by the Joint Commission. While outcome measures 
are typically risk-adjusted—given the varying expectations of an outcome 
based on patient characteristics—process measures are typically measured 
as a binary occurrence: that is, a process was either followed or not, regard-
less of patient characteristics.

Process measures are usually expressed as a numerator over a denomi-
nator, where the denominator defines the specific eligibility criteria for the 
measure. For the aspirin on arrival measure (AMI-1), a patient must satisfy 
the measure’s denominator eligibility criteria with characteristics such as 
having AMI (based on ICD-10-CM coding), age 18 or older, and not being 
discharged on the day of arrival. The measure also excludes patients in the 
event of aspirin contraindication (e.g., a patient is already on a blood thinner, 
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and an additional dose of aspirin could be dangerous). The numerator is 
the administration of aspirin within 24 hours before or after arrival. Along 
with the measure, the Joint Commission provides a clinical rationale, fur-
ther corroborated by various academic sources justifying the approach as 
evidence-based.

There is a cornucopia of process measures defined through several indus-
try-standard measure sets. Such measures can be more general in nature or 
specific to a physician’s specialty or practice. An ophthalmologist might use a 
measure on dilated macular examinations for patients 50 years or older with 
macular degeneration. A dentist might measure the proportion of patients ages 
6–20 receiving fluoride varnish during their dental examination, and mental 
health professionals might be measured by the rate of suicide risk assessments 
for patients 18 years and older diagnosed with major depressive disorder.

Patient Reported Outcomes

As you might have guessed, patient-reported outcomes are, in fact, outcomes 
reported by the patient. Such outcomes can include, for example, a patient’s 
self-reported pain levels, functional status (i.e., the ability to perform cer-
tain activities), and satisfaction following care. They are used within various 
regulatory programs (e.g., MIPS, Hospital Value-Based Purchasing [HVBP] 
program, and the CMS Overall Star Ratings program) and can impact physi-
cian and hospital payments from CMS and other payers.

Patient experience measures are perhaps the most well-known patient-
reported outcomes. Data for patient experience measures are typically cap-
tured through phone calls, paper surveys, or electronic surveys conducted 
by a third-party organization. Chances are, you’ve received an email or let-
ter containing a patient satisfaction survey after visiting a physician’s office 
or hospital. The questions are designed to measure various dimensions of a 
patient’s experience during care, such as timeliness of care of appointments, 
nurse and doctor communication, and cleanliness and quietness of the hospi-
tal. Within the physician office setting, the AHRQ Consumer Assessment of 
Healthcare Providers and Systems (CAHPS) survey is commonly used, while 
in the inpatient setting, the Hospital Consumer Assessment of Healthcare 
Providers and Systems (HCAHPS) survey is employed.

Efficiency Measures

Efficiency measures are designed to identify opportunities for process opti-
mization, care coordination, cost containment, and resource efficiency. This 
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section will explore several key efficiency measures used in healthcare data 
analyses and measurement.

Cost

Cost is often considered an efficiency measure as it refers to the cost of care 
incurred by the healthcare provider (e.g., a hospital). It is typically a mea-
sure designed to balance the resources expended and the outcomes achieved. 
These measures encompass not only direct costs of care (e.g., supplies, blood, 
drugs) but also indirect costs such as administrative overhead (e.g., labor, 
utilities, facilities). Evaluating cost efficiency helps healthcare organizations 
allocate resources effectively and identify opportunities to change processes 
or renegotiate the costs of supplies. In many cases, cost is a severity-adjusted 
(or risk-standardized) measure, as the expectation of cost for a patient dur-
ing an inpatient stay or larger clinical episode will vary depending on the 
patient’s clinical and demographic characteristics. Therefore, cost can be 
measured as a ratio of observed cost to expected cost.

Length of Stay

The length of a patient’s hospital stay (LOS) is a prominent measure of 
healthcare efficiency. Shorter hospital stays, without compromising the qual-
ity of care, often translate to cost savings and improved patient experiences. 
Efficiency measures related to LOS evaluate whether patients are hospital-
ized for an appropriate duration, considering their specific medical condi-
tions and treatment needs. As with cost, LOS is typically risk-standardized 
to account for the patient mix within an evaluated population.

Utilization

Efficiency measures can also evaluate the reasonable and appropriate 
usage of resources such as supplies, tests, and medications. The Healthcare 
Effectiveness Data and Information Set (HEDIS) measure set published by the 
National Committee for Quality Assurance (NCQA) includes a wide range 
of measures related to overuse and appropriateness of resources. For exam-
ple, the “Use of Imaging Studies in Low Back Pain” measure is an evidence-
based measure that assesses potential overuse of imaging services (such as 
X-rays, MRIs, and CT scans) for patients with lower back pain—as unneces-
sary use of such imaging has not been shown to result in improved patient 
outcomes and further exposes can expose patient to undue and potentially 
harmful radiation. Other measures may evaluate excessive or unnecessary 
use of medications (such as antibiotics or opioids), imaging, labs, and other 
costly services.
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Perhaps the most well-known measure of utilization is the Medicare 
Spending Per Beneficiary Measure (MSPB), designed to assess risk-adjusted 
episodic Medicare cost—that is, the amount that Medicare reimburses for 
the entire patient episode. The MSPB measure episode is initiated with 
an index visit to a hospital, resulting in an episode window ranging from 
three days before the index and 30 after discharge. The measure evalu-
ates all Medicare payments for a given patient within that episode and 
assesses if the total episodic utilization is more than we would expect on 
average. The intuition behind the measure is that improved care coordina-
tion across care settings will result in less overall utilization. The MSPB 
measure is especially impactful for clinicians and hospitals as it is included 
in CMS regulatory programs designed to incentivize quality and efficiency 
through potential reductions in Medicare payments. It is a complex mea-
sure with many nuances and is challenging for hospitals and physicians to 
improve.

Structural Measures

Lastly are structural measures, which are pivotal in evaluating and 
improving the quality and efficiency of healthcare delivery. Structural 
measures are typically assessed at the organizational level and include 
labor-related measures (nurse-to-patient ratios, the percentage of contract 
labor on a hospital unit, bed occupancy rates) and interoperability (adop-
tion of technology standards, and implementation of EHR-based report-
ing). While structural measures are ultimately intended to improve the 
quality and efficiency of care, they are often implemented in pursuit of 
various accreditation and certifications—such as those provided by the 
Joint Commission.

In the above paragraphs, we’ve discussed a wide range of measure sets 
maintained by various organizations. Table 2.1 lists some of the most com-
monly employed healthcare measure sets.

Measure Development

As healthcare analysts, we are often tasked with developing measures out-
side of the selection of industry-standard measures discussed above. In this 
section, we’ll discuss essential aspects of custom measure development.
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Cohort Criteria

Once the measure concept has been determined (e.g., mortality, hemoglo-
bin A1C, patient discharge instructions, pressure ulcers), the inclusion and 
exclusion criteria for the patient population can be defined. Perhaps we’ve 
created a measure that evaluates mothers who have returned to the emer-
gency department within 30 days after delivering a newborn. In the mea-
sure definition, we must define the characteristics qualifying a patient for the 
measure. Perhaps we use the patient’s MS-DRG or specific ICD-10 codes to 
identify delivering mothers. We might also set age ranges to exclude patients 
outside a normal delivery range.

TABLE 2.1

Common Industry Measure Sets

Measure Steward Measure Set Measure Types Data Source

Yale Center for Outcomes 
Research and Evaluation 
(CORE)

Risk Standardized 
Inpatient Outcomes

Outcomes Administrative, 
EHR

Agency for Healthcare 
Research and Quality 
(AHRQ)

IQIs and Patient Safety 
Indicators (PSI)

Outcomes Administrative

The Joint Commission Core Measures Process, Outcome, 
Structural

Administrative, 
EHR

Centers for Medicare and 
Medicaid Services (CMS)

Healthcare Acquired 
Conditions (HACs)

Outcomes Administrative

Centers for Medicare and 
Medicaid Services (CMS)

Medicare Spending 
Per Beneficiary 
(MSPB)

Efficiency Administrative

National Committee for 
Quality Assurance (NCQA)

Healthcare 
Effectiveness Data 
and Information Set 
(HEDIS)

Process, Efficiency Administrative

National Healthcare Safety 
Network (NHSN)

Healthcare-Associated 
Infections (HAI)

Outcomes EHR

Hospital Consumer Assessment 
of Healthcare Providers 
and Systems (HCAHPS) for 
hospitals and the

Patient Satisfaction Patient Reported Survey

Consumer Assessment of 
Healthcare Providers and 
Systems (CAHPS)

Patient Satisfaction Patient Reported Survey
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Often, measures are used to evaluate the performance of clinicians, hos-
pitals, and other care providers, so it is important to think about what is 
within the control of the care provider. For example, if a patient leaves the 
hospital AMA (against medical advice), the physician might not have had 
the opportunity to provide the full extent of care. If such patients were 
included in the measure, would the physician be unfairly penalized for 
an unfavorable outcome for that patient? Imagine a hospital administra-
tor discussing with a physician how their AMA patient did not receive 
adequate discharge instructions as part of their patient experience survey. 
Similarly, we could consider patients under DNR (do not resuscitate) sta-
tus. Should DNR patients who expire in the hospital be evaluated equally 
with those who are not DNR—especially considering that extreme res-
cue measures will not occur for the DNR patient (compared to the DNR 
patient)? A patient’s transfer-in and transfer-out status should also be con-
sidered. Imagine a patient being transferred to a hospital with a CLABSI 
and who subsequently dies while in the hospital. Should the admitting 
hospital be penalized for an outcome due to care provided mainly by the 
transferring facility? While much of the cohort identification process is 
about identifying patients satisfying the clinical definition of the measure, 
there is also a fairness component so that care providers are not unfairly 
penalized for outcomes outside of their control. As we’ll see in the chapter 
on risk adjustment, these considerations do not always need to be han-
dled through exclusion rules, as some of these factors can be handled as 
confounding variables within the statistical models in the development of 
risk-adjusted outcomes. We’ll discuss this in more detail in the chapter on 
Standardization (Chapter 8).

Data Standardization

Another challenging aspect of measure development is obtaining a stan-
dardized and stable definition for diseases, procedures, and other healthcare 
concepts. But Mike, can’t we use standards like ICD-10 to classify clinical 
concepts in a consistent manner? Unfortunately, the answer in many cases 
is no. Coding standards are continually evolving and being refined by stew-
ards of those standards. ICD-10 codes, for example, are now updated twice 
annually. In that process, ICD-10 codes can be replaced with new ones (e.g., 
one code might be broken out into three for greater specificity). The same 
is true for MS-DRG and CPT-4 codes. As such, there is a shelf-life to mea-
sure definitions. A measure using a disease definition based on the current 
ICD-10 standards can produce misleading results if applied to a different 
timeframe, as the way a disease is defined today through ICD-10 coding 
may be very different from how it was defined in the past. Therefore, regu-
larly maintaining measure definitions is necessary to ensure that the results 
remain valid.
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One way to mitigate some of the effects of changing standards is to clas-
sify diseases more broadly such that the broader definition absorbs granular 
changes in standards for highly specific codes. Perhaps we are evaluating 
osteoarthritis as a risk factor for total hip and knee complications. Many ICD-
10 codes define various types and locations of arthritis, and these specific 
codes are subject to change as the ICD-10 coding system is updated. If we 
were to group all forms of arthritis into a broader category, changes in the 
specific codes would not affect our more generalized definition (of course, 
any underlying mappings would need to be maintained to ensure that the 
new codes are mapped to the broader category).

In this section, we’ll focus on administrative coding, one of the most stan-
dardized sources for diagnoses and procedures regularly used in healthcare 
analyses.

Diagnosis and Procedure Classification

Let’s talk about some ways that one might choose to categorize diseases and 
procedures.

We’ve touched on MS-DRGs in the previous chapter, but discussing their 
use in healthcare research and statistics will be helpful. It is important to 
know that MS-DRGs are a grouping defined for reimbursement from 
Medicare. It is essentially a grouping of related conditions that fall within a 
similar cost category. Each patient encounter is assigned only one MS-DRG, 
which is a grouping based primarily on the patient’s principal diagnoses. 
MS-DRGs are classified as medical or surgical types and provide additional 
information related to other clinical conditions that have occurred with that 
patient encounter. This said, cost is the primary driver of an MS-DRG group-
ing. Like ICD-10 codes, MS-DRG codes (and their grouping rules) change 
at regular intervals and are subject to change over time. MS-DRGs can be 
further grouped into one of 25 Major Diagnostic Related Categories (MDC) 
for a broad categorization of MS-DRGs.

Additionally, it is common practice to average the MS-DRGs based on 
their MS-DRG weight to form a Case Mix Index (CMI). A CMI can be calcu-
lated at various levels (e.g., physician, service line, or hospital) and is often 
used to capture the relative complexity of a patient population. While the 
MS-DRG is often used as a clinical grouping in health research and statis-
tics, there are alternatives that are better suited for grouping related clinical 
conditions.

One of the most common standards for grouping clinical conditions is 
the AHRQ Clinical Classification Software Refined (CCSR) groupings for 
diagnoses and procedures. Using the CCSR standard, ICD-10-CM codes are 
grouped into 530 disease categories and 22 body systems, and ICD-10-PCS 
codes are grouped into 320 procedure categories across 31 clinical domains. 
CCSR codes can greatly simplify the measure development process by 
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grouping related conditions into comorbidities and complications as part of 
the larger measure development process.

Another grouping for diagnoses commonly employed in measure develop-
ment is the Hierarchical Condition Categories (HCC). HCCs were developed 
by CMS as part of Medicare Advantage (where private insurance companies 
contract with the federal government to provide Medicare benefits) but are 
often used to group ICD-10-CM diagnoses into 115 HCCs (at the time of this 
publication).

For a more robust, flexible mapping, one might consider the Unified 
Medical Language System (UMLS) meta-thesaurus maintained by the U.S. 
National Library of Medicine. The UML meta-thesaurus is designed to unify 
the many healthcare taxonomies and ontologies to find equivalency across 
various clinical concepts. Within the meta-thesaurus, mappings between 
SNOMED-CT and ICD-10-CM are available, allowing researchers to define 
ICD-10 codes across the robust SNOMED-CT ontology. Similarly, ICD-10-
PCS and CPT-4 codes can be evaluated within the SNOMED-CT ontology 
for more dynamic procedure classification. As with all analyses, there are 
tradeoffs between complexity and efficiency.

Within the broader category of disease classification, industry-standard 
definitions exist for classifying ICD-10-CM-based comorbidities that may 
increase a patient’s risk for adverse outcomes. Two noteworthy comorbidity 
standards are the Charlson and Elexhauser comorbidities. The Charlson and 
Elixhauser comorbidities are often expressed as an index aggregating the col-
lective risk across individual patient comorbidities. AHRQ further publishes 
a Chronic Condition Indicator Refined (CCIR) list that designates specific 
diagnoses as chronic conditions.

The literature contains many domain-specific comorbidity definitions, 
and their utility and relevance will depend on the research question being 
addressed.

There are tradeoffs in generalized definitions for diseases and procedures. 
A definition that is too broad will lose important clinical specificity when 
assessing risk, while a definition that is too narrow may not be useful (due to 
low volume) and is at greater risk of being influenced by changes in coding 
standards. Finding the right level of definition is an art; if done well, it can 
result in a much more reliable measure over time.

Identifying Patients

Uniquely identifying patients allows researchers to track them across the 
continuum of care, whether to assess the cost of an episode of care across 
care settings or identify readmissions, mortality, and complications occur-
ring post-discharge.

There are several ways that a patient can be identified within healthcare 
data, but typically, it will be through one of three codes—a medical record 
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number (MRN), a beneficiary ID, or a master person ID (MPI). There are, like 
all datasets, tradeoffs with each of these.

The MRN is a unique patient identifier with a given hospital or health sys-
tem, but it is not unique across health systems and care settings. As a result, it 
provides incomplete information about a patient’s journey. Therefore, using 
an MRN to calculate readmissions or 30-day mortality will only provide vis-
ibility into events that occur within the scope of that data. For example, a 
patient discharged from Health System A and readmitted to Health System B 
may not be visible to the analyst using an MRN number (given that the code 
is specific to Health System A).

Another identifier is the beneficiary ID, which is assigned by the payer 
(the insurance company). The beneficiary ID will remain the same for 
a patient across systems and care settings and is a more robust ID for 
measuring care across the continuum. The drawback, of course, is that a 
payer represents a cross-section of the patient population. Medicare and 
Medicaid are two of the largest payers in the United States, and their data 
is regularly used in analyses, given that they can be purchased under 
license from CMS. The drawback, however, is that Medicare includes data 
for patients primarily 65 or older (with some exceptions), and Medicaid 
represents a cross-section of the population with low income or who are 
disabled. While linking on beneficiary ID provides a more complete pic-
ture of a single patient, it often captures a narrow segment of the larger 
patient population.

The holy grail of identifiers is the MPI—an identifier assigned to patients that 
is unique across payers and care settings. MPIs are typically generated using 
sophisticated matching algorithms that match patients based on their name, 
address, date of birth, and other identifying characteristics. The MPI pro-
cess is notoriously difficult and is almost always a probabilistic-based match. 
While we might be confident that 97-year-old Rufus Beelzebub Wasowski in 
Lubbock, TX, in one hospital is the same as Rufus Beelzebub Wasowski in 
Lubbock, TX, seen in another hospital, we might be less confident about John 
Smith in Manhattan matching another John Smith in Manhattan. The ability 
to produce a high confidence MPI value often requires detailed patient infor-
mation often unavailable in research datasets. There is no perfection in MPI 
identification, and a researcher should know that MPIs typically come with 
some degree of error.

Clinical Episodes

Related to patient identification is the idea of a clinical episode—a range 
of time relevant to the condition being evaluated. While many measures 
evaluate performance using data limited to what is available at the point 
of care (e.g., inpatient mortality, Hemoglobin 1AC), other measures 
require evaluating patients longitudinally across care settings. We might 
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consider the total 90 cost of an AMI episode. Using a unique patient iden-
tifier (a beneficiary ID, perhaps), we might sum the total cost across phy-
sician office, inpatient, and outpatient data to determine episodic cost. 
When developing measures, it is necessary to consider a timeframe rel-
evant to a given measure. These cross-cutting or continuum-based mea-
sures are becoming more common as the eye of healthcare analysis looks 
beyond the siloed care settings toward the broader overall care provided 
to a patient.

A representative example of this is mortality. While inpatient mortality 
is often reported as an immediate measure of quality of care, a patient 
discharged too soon without receiving adequate care may expire at home 
or in another care setting. Therefore, it is important to measure both inpa-
tient mortality and mortality within some follow-up period (episode) in 
which the patient is sensitive to the care provided during their previous 
stay.

Some researchers and healthcare organizations employ episode groupers 
that group patient encounters into a broader time grouping or episode. 
Typically, these algorithms include an index visit (an initial visit that marks 
the start of the episode), which anchors the episode relative to the care pro-
vided before and after the visit.

Attribution

Physician attribution is the process or method by which physicians are attrib-
uted to patients as being responsible for a patient’s care. Despite being an 
understudied aspect of healthcare analysis, attribution methods are neces-
sary so that physicians are not unfairly attributed to adverse events or excess 
utilization for which they had little involvement.

We can group attribution methods into two categories: plurality and inpa-
tient attribution.

Plurality attribution is designed to identify the physician responsible for 
a patient across care settings within some episode. The episode could be 
based on a specific diagnosis (a 60-day pneumonia episode, for example) or 
across a set timeframe. These methods commonly work by identifying the 
physician associated with the plurality (i.e., the highest count) of visits or 
the highest total cost within the episode. Perhaps a patient saw the primary 
care provider (PCP) three times, went to the emergency department (ED) 
once, and was admitted to a med/surg unit twice within one year. If the 
total number of visits is used, the PCP would be attributed; however, an 
inpatient physician could be responsible for the larger episode if the total 
cost is used. Generally however, the attributed physician in these models is 
the PCP.
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In the inpatient setting, a patient may be seen by multiple physicians with 
different specialties and varying durations. Consider a patient with an inci-
dence of retained surgical bodies (RSBs) after surgery—a complication where 
the surgeon inadvertently leaves an object in the patient, such as a sponge, 
after surgery. Let’s also say that this patient developed a CAUTI while recov-
ering in the med/surg ward. This patient was seen by two hospitalists and 
a surgeon. In an ideal world, the RSB would be attributed to the surgeon as 
most responsible for this avoidable complication. The CAUTI incident is a bit 
more complicated. It could be argued that the hospitalist physician should be 
attributed to the CAUTI incident, but such infections are generally a result 
of poor hygienic practices and are more sensitive to nursing care. If selecting 
the hospitalist, we would need to decide if both should be attributed or per-
haps we would attribute the physician who saw the patient with the greatest 
duration of time.

Attribution is, I might say, “complicated”, and physicians and hospitals 
can employ several methods to make more informed attribution assign-
ments. Some methods use fixed business rules, while others use statistical 
modeling to make a probabilistic assignment.

Coding and Documentation

In any analysis, we should be cautious about how much trust we put into 
the data. Humans can enter inaccurate or incomplete data into the EHR 
or neglect to enter important information altogether. Incorrect or missing 
data can be a source information bias, where the data does not accurately 
represent reality. One area where we must be especially careful is the stan-
dardization of clinical concepts like diagnoses and procedures. Coding ICD-
10 codes and HCPCS/CPT4 codes is primarily a human process (although 
computer-assisted coding tools are becoming more common), making it 
prone to error.

Beyond the discussion of errors that can occur in the clinical coding 
process, the concepts of coding intensity and coding specificity should be 
touched upon. It is important to remember that the clinical coding pro-
cess is motivated by reimbursement from a payer (such as Medicare) and 
that clinical information irrelevant to reimbursement (e.g., smoking cessa-
tion, aspects of SDoH) might not be recorded in the administrative data. 
Therefore, there is a point in abstracting patient information where the hos-
pital or physician’s office will receive no additional payment for added 
coding. For example, perhaps a patient is admitted to the hospital with 
Acute Myocardial Infarction but also has Type II diabetes and a history of 
prostate cancer. At a certain point, the reimbursement for the claim gener-
ated from this data will not increase, even if additional details about the 
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patient are recorded. As a result, there is, quite literally, no payoff for the 
extra coding work.

Deficits in coding rigor can occur in two ways. First is the concept of coding 
intensity, where the clinical coder neglects to capture the breadth of informa-
tion about a patient encounter. The second relates to coding specificity, which 
results from a clinical coder neglecting to fully qualify the code to the high-
est degree of specificity possible. Coding specificity is typically measured by 
the proportion of ICD-10 codes that are “unspecified”. In other words, the 
coder selected a broad catch-all ICD-10 code to represent the condition (e.g., 
“unspecified dementia”). While coding intensity is related to the quantity 
(or breadth) of coding, coding intensity relates to the quality (or depth) of 
coding. Variation in coding intensity and specificity can affect the validity 
of a measure if corrections are not in place to ensure measure comparability 
across healthcare organizations.

Balancing Measures

We should not evaluate measures in a vacuum. When developing measures, 
it is important to consider how improvement in one measure might affect the 
broader picture of patient care. For example, what is the interaction between 
a hospital’s cost-cutting measure and patient morbidity? Does cost-cutting 
affect the quality of care? Does increasing nurse-to-patient ratios increase 
nursing burnout? If patients are discharged from the hospital prematurely, 
do readmission rates increase?

The point here is that care should be evaluated holistically so that 
improvement in one measure does not result in an unfavorable result in 
another. Balancing measures are designed to mitigate the problem (i.e., the 
overemphasis of one measure over another). One recent extreme example 
occurred with the HCAHPS patient satisfaction survey, where patients were 
asked if their pain was adequately controlled. As background, this measure 
at the time was used within CMS regulatory programs that would finan-
cially incentivize hospitals to perform well, and so poor performance on 
any measure was evaluated with scrutiny. At the time, around 2016, there 
was increasing awareness of the opioid crisis, and in hindsight, it was clear 
that the patient satisfaction pain measure was potentially encouraging phy-
sicians to prescribe opioids more than what was necessary. The measure 
was later removed from the CMS program due to concerns of unintended 
consequences.

There are several rating programs that are designed to score hospitals 
and physicians based on their overall care. These programs, such as the 
Merit-Based Incentive Payment System (MIPS), HVBP program, CMS 
Overall Star Ratings program, U.S. News and World Report, Leap Frog 
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Hospital Ratings, and the Premier 100 Top Hospitals program, are all 
designed to measure a hospital’s performance across many facets of care, 
including patient experience, efficiency, quality, and safety. The programs 
are inherently designed around balancing measures such that a physician 
or hospital needs to perform well across measures to receive high marks in 
the program.

Ranking Measure Performance

If the measure being developed is designed to compare performance across 
facilities or physicians, it is worthwhile to consider potential bias due to phy-
sician or hospital volume. The NHSN HAI measures are a great example of 
potential low-volume bias. HAIs can be rare occurrences whereby observed 
events (like MRSA infections) are modeled as an observed to expected ratio. 
In low volume, the problem with this type of measure is that small hospitals 
are more likely to lead the charts as top performers when ranking facilities. 
Even though the measures are risk-adjusted through a ratio of observed to 
expected events, the chances of a zero for a small hospital are much higher 
than a large hospital, and so small hospitals generally perform better in 
the O/E rankings simply due to volume alone. The AHRQ PSI measures 
are designed to address this problem with the use of a weighted average 
of hospital performance with a national rate. When we have less volume 
(or less reliable data) from smaller hospitals, the weight in the weighted 
average moves their performance toward the national population (due to 
uncertainty); however, with greater volume (more reliability), the hospital 
performance weight in the weighted average is small, and the hospital per-
formance is less influenced by the national rate. This also has its challenges, 
as small hospitals will struggle to achieve a high placement in the rank-
ings when their performance is represented mainly by the national average. 
One practical solution in these scenarios is to stratify hospitals by a volume 
measure, such as the number of beds in the facility or the total number of 
discharges.

Additional Resources

CMS MIPS Measures. ​https://​qpp.​cms.​gov/​mips/​explore-​measures
Joint Commission Measures. ​https://​www.​jointcommission.​org/​measurement/​

measures/
CMS Quality Measures. ​https://​www.​cms.​gov/​medicare/​quality/​initiatives/​

hospital-​quality-initiative

https://qpp.cms.gov/mips/explore-measures
https://www.jointcommission.org/measurement/measures/
https://www.jointcommission.org/measurement/measures/
https://www.cms.gov/medicare/quality/initiatives/hospital-quality-initiative
https://www.cms.gov/medicare/quality/initiatives/hospital-quality-initiative
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NHSN Measures. https://www.cdc.gov/nhsn/hai-checklists/index.html
AHRQ Measures. https://qualityindicators.ahrq.gov/measures/qi_resources
Care Compare Measure Database. https://data.cms.gov/provider-data/
AHRQ Clinical Classification Software Refined (CCSR). https://hcup-us.ahrq.gov/

toolssoftware/ccsr/ccs_refined.jsp
UML Meta-thesaurus. https://www.nlm.nih.gov/research/umls/knowledge_

sources/metathesaurus/index.html

https://www.cdc.gov/nhsn/hai-checklists/index.html
https://qualityindicators.ahrq.gov/measures/qi_resources
https://data.cms.gov/provider-data/
https://hcup-us.ahrq.gov/toolssoftware/ccsr/ccs_refined.jsp
https://hcup-us.ahrq.gov/toolssoftware/ccsr/ccs_refined.jsp
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
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3
Hypothesis Testing

To introduce hypothesis testing, let’s start with an example. You’re a data ana-
lyst for a large acute care hospital and have been tasked with measuring the 
monthly incidence (occurrences) of healthcare-acquired infections (HAIs). In 
that analysis, you begin with some simple trended reports and observe that, 
of the various HAIs being evaluated, surgical site infections (SSIs) increased 
from 1% in September to 3.25% in October of the current year!

You must decide if the shift in SSIs is significant and recommend to the 
chief quality officer if SSIs should be prioritized above other quality initia-
tives in the hospital.

You show the preliminary analysis to a few coworkers for their opinions 
and receive conflicting advice on what recommendation to make. Some 
coworkers argue that SSIs are uncommon and largely chance events and that 
you should not read too much into the September to October increase. Others 
emphasize the severity of SSIs and suggest considering a more rigorous SSI 
quality improvement initiative.

Resources are limited in the hospital, and you want to make a recom-
mendation that best uses those resources. You ask one more coworker, 
who happens to have a statistics background, and she recommends a 
“two-sample test for proportions” to determine if the shift in SSIs is sig-
nificant. With her help, you conduct the test using a few lines of code and 
conclude that, given the number of cases of data being evaluated and the 
variance in the data, the shift is statistically significant and, as a result, rec-
ommend that a quality improvement initiative be considered. The ques-
tion that we have been able to address, with the help of hypothesis testing, 
is that the shift in SSIs from September to October is not likely to occur by 
chance and that there is sufficient evidence to indicate a sudden drop in 
quality of care.

Questions such as these occur frequently in healthcare. You might find that 
a hospital is spending three dollars more per butterfly needle compared to 
other hospitals in their health system and need to determine if this cost differ-
ence is meaningful. Perhaps you notice that the number of patients receiving 

http://dx.doi.org/10.1201/9781003609759-3
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the flu vaccination in October has decreased relative to the prior year. 
You might observe that the average length of stay for AMI patients is 
reduced by approximately one day when a newly approved medication is 
administered, and you want to know if the shift is meaningful. These are all 
research questions that can be tested with hypothesis testing!

Introduction to Hypothesis Testing

Hypothesis testing is a foundational framework used across a myriad of 
healthcare disciplines to provide a consistent data-driven method for objec-
tive decision-making. The framework gracefully accounts for natural error 
due to sample size and variance in the data distribution. Through hypothesis 
testing, we can determine if differences in the data are “statistically signifi-
cant” within some predefined level of confidence. Without hypothesis test-
ing, the onus is on the individual to subjectively assess whether the observed 
difference between two quantities is significant.

The term “Hypothesis Testing” can be intimidating and, for some, is 
reserved solely for formalized experiments conducted by scientists in white 
lab coats. I’ll stress that hypothesis testing should be integral to day-to-day 
analyses. Seemingly large differences in some supply costs may be insignifi-
cant, and seemingly minor differences in inpatient mortality may be highly 
significant. Without understanding the underlying characteristics of the data 
being evaluated, we risk acting on meaningless differences or failing to act 
on a meaningful difference in the data.

Including measures of statistical significance in presentations, technical 
documentation, and white papers provides additional credibility to your 
analysis in a consistent and data-driven way. It allows analysts to speak a 
common language regarding the research question, the level of evidence 
collected, and the conclusions made through the analyses. Materials that 
are qualified with measures of statistical significance signal to the stake-
holder that the methods are grounded in a robust objective evaluation 
framework.

Steps to Conduct a Hypothesis Test

We can break down the process of hypothesis testing into a series of steps: 
(1) define the hypothesis, (2) set the significance level, (3) calculate the test 
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statistic, (4) calculate the p-value, and (5) make a decision. Let’s work through 
these steps one by one.

	 1.	Define our hypothesis: With hypothesis testing, we start with two 
opposing statements—a null hypothesis and an alternate hypothesis. The 
null hypothesis assumes the status quo; no difference exists between 
the two values being compared. Conversely, the alternate hypothesis 
asserts that there is a statistically significant difference between the 
evaluated quantities within some predetermined level of confidence. 
The alternate hypothesis is generally our actual research question; 
however, we cannot directly prove that an alternate hypothesis is 
true. We must instead state that, based on the evidence in the data, it 
is unlikely that the difference is simply a result of chance in the data. 
In other words, we can say that there is sufficient evidence to reject 
our null hypothesis with some degree of confidence in favor of our 
alternate hypothesis.

I know that this all sounds very noncommittal. In fact, there is a 
saying about statisticians, “Statistics is the art of never having to say 
you’re wrong”. This approach does seem strange at first, but hang 
in there with me a bit longer, and perhaps you’ll agree. With more 
evidence, you might reject your null hypothesis!

There are three primary research questions for which we would 
use hypothesis testing. We might want to know if some quantity 
of interest (e.g., the proportion of SSIs for September) is greater 
than some comparison or “null” value (e.g., the proportion of SSIs 
for October). Conversely, we might want to know if the quantity 
of interest is less than some comparison value. Finally, we might 
want to know if the quantities are significantly different (in either 
direction).

These scenarios are the basis for the left-tailed, right-tailed, and 
two-tailed tests. Let’s pause for a moment and formalize our defi-
nitions:

With hypothesis testing, we must distinguish a mean or proportion calculated 
from a population (i.e., all observations) from a mean or proportion from a sam-
ple (i.e., a subset of a population). Samples are error-prone and inherently dif-
ferent from the true value known through the full dataset or population. We 
will refer to means and proportions from a sample as a “sample statistic” and 
a mean or proportion calculated from a population as a “parameter”. Trust me, 
without using these terms, you will quickly become annoyed with me spelling 



36� Practical Healthcare Statistics with Examples in Python and R

Okay, back to the topic at hand—the null and alternate hypotheses.
Null Hypothesis: The null hypothesis asserts that there is no dif-

ference between the values being compared—the status quo. In no-
tation, it is typically represented as 0H .

Alternate Hypothesis: Conversely, the alternate hypothesis states 
that there is a difference between the tested values represented in 
notation as aH . The alternate hypothesis generally takes one of three 
forms: left-tailed, right-tailed, and two-tailed.

Left-tailed: Testing if the value of interest less than the compara-
tor value.

Right-tailed: Testing if the value of interest greater than the com-
parator value.

Two-tailed: Testing if the value of interest different than the 
comparator value in either direction.

The full notation for hypothesis testing will vary depending on the 
characteristics of the data and the research question (e.g., means or 
proportions). We’ll cover these differences later in this chapter, but 
staying with our SSI example using proportions, we might represent 
our hypotheses as follows:
	•	 Null Hypothesis ( ) =H p p0 1 2:
	•	 Alternate Hypothesis: ( ) >aH p p1 2:

where 1p  represents the proportion of SSIs from October and 2p  
represents the proportion of SSIs from September. We are using a 
right-tailed test in this example as we are asserting that the propor-
tion of SSIs in October is greater than that of SSIs in September, and 
therefore, we are using the greater-than symbol in our alternate hy-
pothesis >1 2p p . If we were to postulate that the proportion of SSIs 
dropped in October, we could frame the alternate hypothesis of a 
left-tailed test as <1 2p p  and, if we were simply interested if the two 
values were different, we could frame the alternate hypothesis state-
ment of a two-tailed test as ≠1 2p p .

out “sample mean or proportion” or “population mean or proportion”. Note also 
that the term test statistic will be used in the subsequent chapters. Be on the look-
out for this term as a test statistic and a sample statistic are different concepts 
that should not be confused with each other. In short, a statistic is calculated 
from a sample, while a parameter is calculated from the full study population.
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	 2.	Set the Significance Level: In the first step, it was mentioned that 
sufficient evidence must exist to reject our null hypothesis in favor 
of the alternate hypothesis. In this step, we must decide how much 
evidence will be required (or how confident we must be) to reject 
our null hypothesis. This value, often called the significance level 
or alpha α , quantifies the acceptable probability of making an 
incorrect decision. We can also express our threshold as a “confi-
dence level” ( α−1 ). A .05 (or 5%) significance level, for example, 
could therefore be rephrased as a .95 (or 95%) confidence level. 
The most common significance levels are α = 05.  or α = 01. , mean-
ing that when we reject the null hypothesis, we are 95% or 99% 
confident that we have not made an error simply by chance. The 
choice of a significance level (alpha) might be larger or smaller 
than the typical values of .05 and .01, depending on the needs of 
the research question.

	 3.	Calculate the test statistic: A test statistic in hypothesis testing is a 
numerical value calculated from sample data to assess the strength 
of evidence against a null hypothesis. It quantifies the difference 
between the sample data and what would be expected under the 
null hypothesis. This test statistic is compared to the predefined sig-
nificance level to determine whether the results are statistically sig-
nificant, leading to the acceptance or rejection of the null hypothesis.

Depending on the type of hypothesis test, the test statistic will fol-
low different distributions. Commonly used test statistics include 
t-statistics, z-statistics, chi-square statistics, and F-statistics, which 
indicate the distribution the statistic follows.

A generalized equation to calculate a test statistic can be expressed 
as follows:

		
−

=
samplestatistic nullvalue

teststatistic
standarderror

where
	 The sample statistic represents the mean or proportion of the 

sample data.
	 The null value represents the comparison value that we will 

compare our sample statistic against to determine if there is a 
statistically significant difference between the two values. The 
null value can be another sample statistic or parameter.

	 The “standard error” is the sampling statistic’s standard deviation.
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Standard error is an important concept, so let’s spend some time talking about it.
Let us suppose that we sampled 30 inpatient hospitalizations 100 times. For 

each sample of 30 patients, we calculated the mean length of stay and plotted the 
distribution of those means as a histogram, as in Figure 3.1.

With each sample, there is the possibility that we happen to select a subset of 
patients with generally higher or lower mean length of stay values by chance 
alone. Nothing is materially different about the true mean length of stay we 
estimate through the sample. We define the standard deviation of these means 
as the standard error (not deviation). As the size of our sample increases, the 
degree of variability in the distribution decreases (since the sample becomes 
more representative of the whole). Conversely, we can expect the standard error 
to increase with fewer samples, as there is more volatility in the mean with 
smaller samples.

FIGURE 3.1
Histogram showing the normal distribution of mean values derived from 100 samples, 
each comprised of 30 observations.
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Putting it all together, the test statistic measures the standardized dif-
ference between the sample statistic and the null value.

	 4.	Calculate the p-value: The p-value represents the area under the 
curve outside of the test statistic, which is expressed as a probability; 
that is, it is the probability of observing a difference as extreme as the 
one in the sample, assuming the null hypothesis is true.

That is a confusing sentence, so let’s pause for a moment and break 
this down in simpler terms. We’ll use our SSI example for context.

As shown in Figure 3.2, the area under the curve to the right of the 
test statistic (z = 2.3) corresponds to the probability of obtaining a val-
ue as extreme as or even more extreme than our calculated test statis-
tic. In this case, a z-score of 2.3 is equivalent to a p-value = .01 or 1% 
(indicating a 1% chance that a proportion of this size would be drawn 
by chance under the assumption that the null hypothesis is true). A 
large p-value indicates that the differences between the sample statis-
tic and the value expected under the null hypothesis would not be un-
common based on the characteristics of the data. On the other hand, 
a small p-value indicates that the differences in the data are not likely 
to occur by chance.

The p-value and test statistic provide similar information; howev-
er, the p-value simply provides a more interpretable value by quan-
tifying the area outside the test statistic relative to the area inside 
the test statistic. It allows us to say that a test statistic of z = 2.3 is 
equivalent to a 1% chance or less that the sample proportion would 
be drawn by chance (if our null hypothesis is true).

We’ve used an example with means in this case; however, sampling error with 
proportion data works in a similar way. If we were to sample data using propor-
tions, the number of “successes” in the sample would vary based on the luck of 
the draw. If we were to plot the distribution of repeated samples of proportion 
data, we would also end up with a sampling distribution that approaches normal 
with an increased number of samples. The difference is that the number of “suc-
cesses” out of “trials” is plotted in the histogram rather than the means of the 
sample.

Fun fact: In the case of continuous data, even if the underlying data distribu-
tion is skewed, the sampling distribution becomes closer to normal, and hypoth-
esis testing is, therefore, fairly resilient to assumptions about normality.

In the paragraphs below, we’ll discuss how standard error is calculated, spe-
cifically for the type of data and the research question being asked.
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A small p-value further indicates stronger evidence for rejecting 
our null hypothesis (which states that there is no difference in com-
plication proportions from September to October) in favor of our al-
ternate hypothesis (there is a difference in complication proportions 
from September to October).

When we have small sample sizes and highly variable data, the 
probability of larger differences in values being compared will be nat-
urally higher, even when no significant difference exists.

We’ll talk about how to tactically obtain a p-value from a test sta-
tistic later in this chapter.

	 5.	Make a decision: Now, you might be asking yourself, at what point 
have we collected enough evidence to reject our null hypothesis 
in favor of our alternate hypothesis? In short, we need to com-
pare the evidence gathered from our test (the p-value) to the pre-
determined evidence threshold that we require (alpha or α ). If 
our p-value is less than our threshold, we have gathered the evi-
dence needed to reject the null hypothesis in favor of our alternate 
hypothesis.

In our SSI example, if we set a significance level (α) of .05 before 
our test and computed a p-value of 0.01, we would reject the null 
hypothesis that the proportion of SSIs from September to October 

FIGURE 3.2
Normal curve with labeled components used within a hypothesis test using the p-value and 
rejection region methods.
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is the same in favor of our alternate hypothesis stating that the pro-
portion of SSIs in October is greater than the proportion of SSIs in 
September, at a 95% confidence level.

Types of Hypothesis Tests

While the steps to conduct a hypothesis test remain the same, tactically, the 
types of tests that we employ will vary depending on the nature of the evalu-
ated data. In this section, we’ll discuss some of the more commonly used 
statistical tests. Throughout the remainder of this book, additional statistical 
tests will be discussed within the context of the chapter topic.

One-Tailed Versus Two-Tailed Tests

Since a two-tailed test is multi-directional, alpha is split between the two tails 
of the distribution. As demonstrated in Figure 3.3, if we were to set alpha as 
.05 in a left- or right-tailed test, alpha represents 5% of the data on the left and 
right tail of the distribution (the area where we will reject the null hypothesis 
if the test statistic falls within it). However, since a two-tailed test is multi-
directional, alpha is split between the two tails, resulting in only 2.5% of the 
data being segmented at the two tails.

It is important, therefore, to select the appropriate direction for a hypoth-
esis test, as a test statistic may fall outside of alpha in a right-tailed test (e.g.) 
but may not fall outside of alpha in a two-tailed test. In other words, more 
evidence is required to reject a null hypothesis in a two-tailed test.

FIGURE 3.3
Alpha thresholds within a normal distribution for left-, right-, and two-tailed hypothesis tests.
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Understanding Errors in Hypothesis Testing

In a nutshell, hypothesis testing is the process of clearly stating our research 
question or business problem in the form of two opposing hypothesis state-
ments, setting a minimum threshold of required evidence and then evaluating 
the data to determine if the collected evidence is sufficient to assert that the dif-
ference is not likely to occur by chance (and therefore statistically significant).

Given that the whole framework of hypothesis testing is based on some 
level of confidence, mistakes will undoubtedly be made. Note the use of the 
passive voice to shield myself from any culpability. After all, a 95% confi-
dence level means that, on average, five out of 100 tests (or 1 out of 20) will 
result in an incorrect conclusion.

There are two ways to draw the wrong conclusions in hypothesis testing. 
The first is when we incorrectly determine that there is a statistically sig-
nificant difference in the data (i.e., we reject our null hypothesis) when no 
actual difference exists. This is referred to as a Type I error. In our SSI exam-
ple, a Type I error would mean that we’ve incorrectly identified a difference 
between September and October complications by rejecting our null hypoth-
esis in favor of our alternate hypothesis.

Conversely, we could also fail to detect a significant difference. In this sce-
nario, the difference between September and October SSIs is significant, but 
our test fails to produce sufficient evidence to reject the null hypothesis at the 
required evidence threshold (alpha). When we fail to identify a true differ-
ence in the data, we have made a Type II error.

Just as there are two ways to be wrong, there are also two ways to be right! 
We can correctly reject our null hypothesis in favor of the alternate hypoth-
esis. Here, the SSI proportions are truly different between the two months, 
and our test correctly identifies that difference.

We can also correctly conclude that the data has insufficient evidence to 
reject our null hypothesis. We could correctly state that there is no statisti-
cally significant difference in SSI proportions, as shown by the insufficient 
evidence collected through our test statistic relative to our alpha threshold.

The types of correct and incorrect conclusions through hypothesis testing 
are often illustrated in tabular form, as shown in Table 3.1.

TABLE 3.1

Type I and Type II Errors in the Hypothesis Testing Process

Test Decision
Reality: Null Hypothesis 
Is True (No Difference)

Reality: Null 
Hypothesis Is False

Reject Null Hypothesis Type I Error Correct Decision
Accept Null Hypothesis Correct Decision Type II Error
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One Sample Versus Two Sample Hypothesis Testing

Hypothesis tests are generally categorized into two groups: one-sample and 
two-sample tests. Let’s explain these by way of example.

In our working example comparing the proportion of SSIs between 
September and October, we are dealing with two independent samples. 
In this scenario, a two-sample hypothesis test would be appropriate. We are 
working with two distinct sets of hospitalizations without overlap and are 
hypothesizing that there is an increase in the proportion of complications 
between the two samples (alternate hypothesis).

Let us say that we are now interested in comparing the proportion of SSI 
complications in September to the proportion of SSIs for the entire year. 
Here, we have September as a sample, or subset, of all hospitalizations for 
the year. A scenario like this would call for a one-sample hypothesis test, as the 

THE REJECTION REGION APPROACH 
TO HYPOTHESIS TESTING

There are two standard methods for conducting hypothesis testing. 
We’ve discussed the “p-value method”, in which the p-value derived 
from the test statistic is compared to the predetermined significance 
level alpha to assess whether the null hypothesis can be rejected. The 
second method is the “critical value method”, which defines a critical 
value rather than an alpha before testing.

The critical value sets an evidence threshold based on the sampling 
distribution (similar to the alpha significance level). For example, for a 
normal distribution, the critical value would be the z-score represent-
ing the boundary where 95% of the data is under the curve, assuming 
alpha = .05. The region outside the critical value is considered the rejec-
tion region.

In this approach, we still calculate a test statistic; however, we do not 
need to convert the test statistic to a p-value. If the test statistic falls 
within the rejection region (the area outside of the critical value), we 
can reject the null hypothesis. This approach is more direct from a 
computation perspective, but I personally prefer the p-value approach 
from a conceptual standpoint. This is a matter of personal preference, 
but I am 75% confident that the p-value method is more interpretable 
than the critical value method. A visualization showing the relation-
ship between the p-value method and the rejection region method is 
provided in Figure 3.2.
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sample is a subset of data from the larger population. It should be noted that 
we don’t always know the population value, so this value can be known or 
hypothesized in a one-sample test.

There is a third scenario where we assess the difference between multi-
ple samples. For example, we might want to know if there is a difference 
between the SSI proportion across September, October, and November. We 
will touch on the methods for this type of testing, but for brevity, we will 
focus on one- and two-sample testing.

Hypothesis Testing for Proportions, Means, and 
Categorical Variables

Now that we have a conceptual understanding of hypothesis testing, let’s 
practice with some hands-on examples.

Once we have determined if a one-, two-, or multiple-sample test is 
required, we need to select an appropriate test based on the types of data we 
are working with.

I know that is a lot of information to process, but don’t worry. We’ll pro-
vide plenty of healthcare-related examples. A set of reference tables has also 
been included in this chapter, where the hypothesis testing steps using statis-
tical notation are shown side by side with a reproducible example in Python 
and R. Additionally, a quick reference flowchart to help understand the most 
appropriate test given the research question and data characteristics is pro-
vided in Figure 3.4. We’ll use the flow chart to work through examples of 
each test type. There are some caveats, of course, and it is important to read 
the fine print after working through the most common scenarios.

We’ll begin by evaluating z-tests (and t-tests by extension) for means and 
proportions.

One-Sample Test for Means

When our goal is to determine if a sample mean (statistic) is different from 
a population mean (parameter), we can use a one-sample test for means. 
Depending on the information about the population and the number of 
observations we are sampling, we will employ either a z-test or t-test. We’ll 
start with the z-test.

z-test

The chief quality officer of a large health system suspects that the patients 
within their system are generally more acute than average. If she can show 
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that their patients are usually more complex, it might help explain the pat-
tern of overall higher rates of morbidity and mortality within their system. 
One way to approach this problem is to compare the health system’s mean 
case mix index (CMI) to the national CMI average using hypothesis test-
ing. As mentioned in Chapter 2, CMI is an aggregation of hospitalization 
Medicare Severity Diagnosis Related Group (MS-DRG) weights that drive 
hospital Medicare reimbursement; however, it is often used as a proxy for 
patient complexity (under the assumption that high-cost patients are gener-
ally more acute).

In forming our hypothesis statement, we must listen carefully to the busi-
ness problem. Since the Chief Quality Officer (CQO) is asking if the mean 
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FIGURE 3.4
Flowchart to identify an appropriate hypothesis test.
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CMI is higher than average (and not simply that they are different), a right-
tailed test is more appropriate. We’ll set up our hypotheses as follows:

	 ( ) µ µ=0 0NullHypothesis H :

	 ( ) µ µ> 0AlternateHypothesis aH :

where µ  is the mean CMI for the health system (sample statistic), and µ0  is 
the national CMI (parameter) across all U.S. hospitals.

We can see that our alternate hypothesis µ µ> 0  (the real motivation behind 
our analysis) asserts that the health system mean µ  is greater than the popu-
lation mean µ0 .

We’ll also set our significance level as α = 05.  (a 95% confidence level).
Now that we’ve formed our hypothesis statement and have set our sig-

nificance level, we can calculate our z-statistic using a one-sample z-test. The 
z-test takes the following form:

	

µ
σ
−= 0x

z

n

where

x  is the health system CMI being evaluated. Note that we use x  (pro-
nounced “x bar”) here to indicate that the average is an estimate. 
The true average µ  cannot be known in reality, given the naturally 
occurring error within any sample. We use x  as an estimate of the true 
mean µ .

µ0  �is the national CMI (the hypothesized value) across all national hospi-
tals. Our null hypothesis asserts that the health system CMI µ  (esti-
mated by x ) is equal to the national CMI µ0 .

σ
n

 �is the standard error, which is formed by the known standard devia-
tion σ  of all hospital CMI values (i.e., the population) divided by 
the square root of the total number of hospitals n  in our sample (the 
health system).

z  is the test statistic indicating the number of standardized units away 
from the hypothesized value µ0

Recall that the area under the curve to the right of the test statistic corre-
sponds to the probability of obtaining a value as extreme or more extreme 
than the test statistic.
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We can represent the p-value from our test statistic as follows:

	 ( )= ≥p P Z z

where

z  is our test statistic (a z-score in this case).
Z  represents a random variable.
p  is the p-value obtained from the test statistic.

we can, therefore, interpret ( )= ≥p P Z z  as the probability that some ran-
dom variable Z  is greater than the test statistic z . In other words, it is the 
area under the curve to the right of the test statistic.

If the p-value is less than alpha α , we reject the null hypothesis in favor of 
the alternate hypothesis.

Enough muddling around with notation. Let’s look at an implementation 
of a one-sample test for means using Python.

import numpy as np
from scipy.stats import norm
health_system_cmi = np.array([1.02, 1.1, 1.05, 0.95, 
0.98, 0.92, 1.12, 1.01, 1.05, 0.93])
national_mean_cmi = 1.0
population_std = 0.1
alpha = 0.05
sample_mean = np.mean(health_system_cmi)
n = len(health_system_cmi)
z_score = (sample_mean - national_mean_cmi) / 
(population_std / np.sqrt(n))
p_value = 1 - norm.cdf(z_score)
if p_value < alpha:

Note that if we were conducting a left-tailed test, the p-value would be repre-
sented as ( )P Z z≤  and the p-value for a two-tailed test as ( )2p P Z z= × ≥ . 
The multiplication by 2 is specifically used in a two-tailed test to account for 
both tails of the distribution. Since a two-tailed test considers extreme values in 
both the positive and negative directions, we need to consider both sides of the 
distribution to calculate the p-value.
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    print("There is sufficient evidence to suggest that 
the health system's mean CMI is greater than the national 
mean CMI.")
else:
    print("There is insufficient evidence to suggest that 
the health system's mean CMI is greater than the national 
mean CMI.")

In this Python example, we have an array health_system_cmi con-
taining CMI values within the health system being evaluated, as well as the 
hypothesized value national_mean_cmi. We then compute a standard 
error (population_std / np.sqrt(n)) using the known population 
standard deviation (population_std) to produce the z-statistic. The 
norm.cdf function from scipy.stats calculates the cumulative distribu-
tion function (CDF) of the standard normal distribution and obtains the right-
tailed p-value. In other words, it computes the area under the curve within 
(to the left of) the test statistic. We then determine if the p-value obtained 
from the test statistic is less than alpha. If so, we will reject the null hypoth-
esis in favor of the alternate hypothesis.

An implementation in R will resemble the Python implementation above:

health_system_cmi <- c(1.02, 1.1, 1.05, 0.95, 0.98, 0.92, 
1.12, 1.01, 1.05, 0.93)
national_mean_cmi <- 1.0
population_std <- 0.1
alpha <- 0.05

sample_mean <- mean(health_system_cmi)
n <- length(health_system_cmi)

z_score <- (sample_mean - national_mean_cmi) / 
(population_std / sqrt(n))
p_value <- 1 - pnorm(z_score)

if (p_value < alpha) {
  print("There is sufficient evidence to suggest that the 
health system's mean CMI is greater than the national 
mean CMI.")
} else {
  print("There is insufficient evidence to suggest that 
the health system's mean CMI is greater than the national 
mean CMI.")
}

Using R, we similarly have a vector health_system_cmi containing 
CMI values as well as the hypothesized value national_mean_cmi. We 
also compute a standard error (population_std / sqrt(n)) using the 
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known population standard deviation (population_std) to produce the 
z-statistic. The pnorm function calculates the CDF of the standard normal 
distribution and obtains the right-tailed p-value. We then determine if the 
p-value obtained from the test statistic is less than alpha to either reject or 
fail to reject our null hypothesis.

t-test

As discussed in the previous section, to conduct a z-test, we must have access 
to the population standard deviation σ . In the CMI example above, we have 
access to the publicly available data for all hospitals (the population) and, 
therefore, have the luxury of a z-test. When the population standard devia-
tion is unknown, we can use the sample standard deviation s  in its place to 
estimate the population standard deviation as part of a “Student’s t-test”. 
In the CMI example, this would be the standard deviation of the CMI val-
ues within the health system being evaluated. The t-test, therefore, takes the 
following form:

	

µ−= 0x
t s

n

where

	•	 x  is the health system mean being evaluated (as an estimate of the 
true system mean µ ).

	•	 µ0  is the national health system mean (the hypothesized value).

	•	
s
n

 is the standard error, which is formed by the estimated standard 

deviation s  of health system CMI values (i.e., the sample) divided 
by the square root of the total count of hospitals n  in our sample (the 
health system).

The t-test is a more conservative test used when the population standard 
deviation is unknown (and, therefore, must be estimated through the sample 
standard deviation, not the population standard deviation). It is also com-
mon for the t-test to be employed when the sample size is small. The t-dis-
tribution is parameterized by the sample size n  (technically, the degrees of 
freedom, which is n-1), allowing the distribution to change shape based on 
the number of samples—requiring more evidence with small sample sizes. 
We will use software to calculate the p-value; however, in the days of old, stat-
isticians would look up p-values based on the sample size and test statistic. 
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The results of the z-test and t-test will largely converge as the sample size 
increases.

A Python implementation of a one-sample t-test for means using our CMI 
use-case is as follows:

import numpy as np
from scipy.stats import ttest_1samp
health_system_cmi = np.array([1.02, 1.1, 1.05, 0.95, 
0.98, 0.92, 1.12, 1.01, 1.05, 0.93])
national_mean_cmi = 1.0
alpha = 0.05
test_statistic, p_value = ttest_1samp(health_system_cmi, 
national_mean_cmi, alternative='greater')
if p_value < alpha:
    print("There is sufficient evidence to suggest that 
the health system's mean CMI is greater than the national 
mean CMI.")
else:
    print("There is insufficient evidence to suggest that 
the health system's mean CMI is greater than the national 
mean CMI.")

The test statistic for a one-sample t-test for means can be calculated using 
the ttest_1samp function from the scipy.stats subpackage—which 
abstracts away the pesky p-value calculation from the t-statistic. This func-
tion returns test statistic and p-value when provided the sample statistic 
health_system_cmi and hypothesized value national_mean_cmi and 
test direction  alternative='greater':

ttest_1samp(health_system_cmi, national_mean_cmi, 
alternative='greater')

In R, the t.test function calculates the t-statistic for us, with similar argu-
ments for the sample vector, population mean, and the “alternative”.

health_system_cmi <- c(1.02, 1.1, 1.05, 0.95, 0.98, 0.92, 
1.12, 1.01, 1.05, 0.93)
national_mean_cmi <- 1.0
alpha <- 0.05

test_result <- t.test(health_system_cmi, mu = national_
mean_cmi, alternative = "greater")

test_statistic <- test_result$statistic
p_value <- test_result$p.value

if (p_value < alpha) {
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  print("There is sufficient evidence to suggest that the 
health system's mean CMI is greater than the national 
mean CMI.")
} else {
  print("There is insufficient evidence to suggest that 
the health system's mean CMI is greater than the national 
mean CMI.")
}

Example implementations for the one-sample left-, right-, and two-tailed 
z-tests and t-tests means are provided in Tables 3.5–3.11.

Two-Sample Test for Means

In the one-sample test for means, a sample is compared to the larger popula-
tion to determine if there is a statistically significant difference between the 
sample and population mean. Another scenario that we commonly encoun-
ter is the need to compare two independent samples. Perhaps a health system 
recently acquired another health system (an increasingly common occur-
rence), and the CQO now wants to know if the hospital CMI values for the 
acquiring health system are different on average from those in the acquired 
health system. In other words, is the overall risk profile for patients in their 
health system different from those in the health system being acquired? The 
distribution of CMI values are independent samples without overlap, mak-
ing the two-sample test for means a suitable choice. Furthermore, a two-
tailed test is appropriate since the objective is to measure the difference in 
either direction.

We’ll set up our hypotheses as follows:

	 ( ) µ µ− =0 1 2NullHypothesis 0H :

	 ( ) µ µ− ≠1 2AlternateHypothesis 0aH :

where µ1  and µ2  are the sample CMI means for the two health systems 
being evaluated.

While we use a two-tailed test in this example, a left- and right-tailed test 
would be represented as µ µ− >1 2 0  and µ µ− <1 2 0 , respectively (indicating 
the direction of the difference).

The null hypothesis in the two-sample test asserts that there is no differ-
ence between the two CMI distributions, while our alternate hypothesis 
states that there is a difference (within some level of confidence).

We’ll use a significance level of α = 05.  (or a 95% confidence level).



52� Practical Healthcare Statistics with Examples in Python and R

In the two-sample test, each sample will have its own variance. If the vari-
ance is the same, we can use “pooled variance” ps  where the variance is 
weighted by the number of observations in the two samples. Otherwise, a 
test using unpooled variance should be employed. As a rough test, if the 
ratio of variances between the two samples is between 0.5 and 2, we can 
say that the variance is roughly equal (one is less than double the other). If 
needed, more formalized tests exist to determine equal variance, such as the 
F-test for equal variance.

Let’s look at a two-sample t-test for comparing means using unpooled 
variance:
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Note that we will not show a z-test as it is rare for both population standard 
deviations to be known. This said that the one-sample z-test and t-test are 
analogous to the two-sample z-test and t-test. One can simply replace the 
sample standard deviations s  with the population standard deviation σ  
to obtain the test statistic. Remember that the z- and t-tests follow different 
distributions (with the latter conditioned on sample size).

When variance is roughly equal, the variance can be pooled.
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where ps  is the pooled (or combined) variance between the two samples.
In the following, we have an implementation of the CMI research ques-

tion using Python. In this example, we use the ttest_ind function from 
scipy.stats to conduct the two-sample test for means. This test pools the 
variance with the equal_var argument set to True. Consistent with the 
previous example, we will use a two-tailed test. To use unpooled variance, 
the equal_var argument would be set to False.

import numpy as np
from scipy.stats import ttest_ind
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health_system_a = np.array([1.93, 1.53, 1.18, 2.09, 
1.68])
health_system_b = np.array([1.63, 0.97, 1.93, 2.02, 
1.46])

t_statistic, p_value = ttest_ind(health_system_a, health_
system_b, alternative='two-sided',equal_var=True) #set 
equal_var=False for unpooled

alpha = 0.05

if p_value < alpha:
    print("There is sufficient evidence to reject the 
null hypothesis in favor of the alternate hypothesis.")
else:
    print("There is insufficient evidence to reject the 
null hypothesis.")

Using R, we can pull the variance in an similar manner using the native 
t.test function:

health_system_a <- c(1.93, 1.53, 1.18, 2.09, 1.68)
health_system_b <- c(1.63, 0.97, 1.93, 2.02, 1.46)

ttest_result <- t.test(health_system_a, health_system_b, 
alternative = "two.sided", var.equal = TRUE) # Set var.
equal = FALSE for unpooled

p_value <- ttest_result$p.value

alpha <- 0.05

if (p_value < alpha) {
  print("There is sufficient evidence to reject the null 
hypothesis in favor of the alternate hypothesis.")
} else {
  print("There is insufficient evidence to reject the 
null hypothesis.")
}

Paired Difference t-test for Means

The paired difference t-test is designed for situations where two measure-
ments are taken from the same subject under different conditions. The 
main idea is to assess whether there is a statistically significant difference 
between the sets of paired observations. For example, we might want to 
compare measurements before treatment to those following treatment. 
Therefore, each patient would have two measurements, and we want to 
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determine if the mean difference between those measurements is statisti-
cally significant.

Hypothesis statements are structured a bit differently with a paired differ-
ence test, as we have two sets of data from the same subjects. Our null hypoth-
esis states that there is no difference between the two sets of measurements, 
while the alternate hypothesis states that there is a statistically significant dif-
ference between the matched pairs. Like the previous tests we’ve discussed, 
we might be interested in a negative, positive, or overall difference between the 
two sets of observations, evaluated through left-, right-, and two-tailed tests.

Suppose a researcher is studying a new drug treatment called Reduceamine 
(pronounced reduce-a-mean), designed to lower blood pressure in hyperten-
sive patients. She wants to determine whether Reduceamine effectively low-
ers blood pressure within the same group of patients over time.

The researcher selects a group of hypertensive patients and measures their 
blood pressure before administering the new drug treatment. After a set 
period, the researcher measures their blood pressure again.

Hypothesis: The null hypothesis (H0) states that the mean blood pressure 
is the same before and after administering Reduceamine. The alternative 
hypothesis (Ha) states that the mean blood pressure decreases after adminis-
tering Reduceamine.

The researcher records each patient’s blood pressure before and after the 
treatment. This gives us paired data for each individual, representing the 
difference between the before-treatment and after-treatment measurements.

A paired difference t-test for means is conducted to determine if there is a 
statistically significant reduction in the mean blood pressure before and after 
the treatment (a left-tailed test).

	 ( ) µ =0NullHypothesis 0dH :

	 ( ) µ <AlternateHypothesis 0a dH :

where d  represents the difference between the two values.

	

=
d

d
t s

n

The alternate hypothesis µ < 0d  is that of a left-tailed test, where we are 
asserting that there is a decrease in blood pressure between the two sets of 
measurements. If we were interested in a two-tailed or right-tailed test, we 
could represent those alternate hypotheses as µ ≠ 0d  or µ > 0d .
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The standard error, like the one-sample test, is comprised of the standard 
deviation of the differences over the square root of the number of matched pairs.

Python

import numpy as np
from scipy import stats

before_treatment = np.array([140, 150, 135, 160, 155, 
110, 125])
after_treatment = np.array([130, 140, 125, 145, 140, 135, 
130])

differences = after_treatment - before_treatment

alpha = 0.05

t_statistic, p_value = stats.ttest_rel(after_treatment, 
before_treatment, alternative = ‘less’)

if p_value < alpha:
    print("Reject the null hypothesis. The treatment has 
a significant effect on reducing blood pressure.")
else:
    print("Fail to reject the null hypothesis. There 
is no significant effect of the treatment on blood 
pressure.")

R

before_treatment <- c(140, 150, 135, 160, 155, 110, 125)
after_treatment <- c(130, 140, 125, 145, 140, 135, 130)

differences <- after_treatment - before_treatment

alpha <- 0.05

ttest_result <- t.test(after_treatment, before_treatment, 
paired = TRUE, alternative = "less")

p_value <- ttest_result$p.value

if (p_value < alpha) {
  print("Reject the null hypothesis. The treatment has a 
significant effect on reducing blood pressure.")
} else {
  print("Fail to reject the null hypothesis. There is no 
significant effect of the treatment on blood pressure.")
}
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One-Sample Test for Proportions

We’ve discussed various scenarios involving testing two means, but how do 
we deal with testing data that involves proportions? As detailed in Chapter 2, 
there is no shortage of proportion measures in healthcare measurement and 
evaluation. Process and outcome measures are often binary in nature and 
are ideal candidates for tests about proportions. A process was followed or 
not, and a complication occurred or did not. Various tests are available for 
proportions, just as there are for testing means.

Perhaps a family physician is interested in evaluating the control of high 
blood pressure in her patient population, an HEDIS measure. High blood 
pressure is a major risk factor for various serious health conditions, includ-
ing heart disease, stroke, kidney disease, and vascular disorders. Detecting 
and managing high blood pressure can significantly reduce the risk of devel-
oping these conditions.

In accordance with the measure definition, patients 18–85 years of age with 
a diagnosis of hypertension within the last year will be tested during their 
office visit. These patients will make up the denominator of our proportion. 
If the patient’s blood pressure is less than 140/90 mm Hg, then the patient’s 
blood pressure will be identified as “adequately controlled” (a numerator 
value of 1). Otherwise, the patient’s blood pressure will be designated as not 
adequately controlled through a 0 value in the numerator.

Since this is an National Quality Forum (NQF)-endorsed HEDIS measure, 
the national average is published on the National Committee for Quality 
Assurance (NCQA) website. For demonstration, we’ll use the population 
proportion of 60.3, indicating that 60.3% of the national population has ade-
quately controlled blood pressure.

The physician wants to assess whether her patients’ blood pressure is 
being managed better or worse relative to the national average. Here, we 
have a scenario that can be tested using a one-sample test for proportions. 
That is, we have a sample of a population (e.g., patients visiting the phy-
sician’s office), and we want to test whether there is a statistically signifi-
cant difference between the samples p  and the hypothesized proportion of 
patients with high blood pressure 0p .

The null and alternate hypotheses are analogous to the one-sample test for 
means in that the null hypothesis asserts that the two samples are not dif-
ferent and will reject the null hypothesis in favor of the alternate hypothesis 
with sufficient evidence. Since the physician is interested in increased mea-
sure compliance, we will conduct a right-tailed test.

	 =H p p0 0Null Hypothesis :

	 ( ) >aH p p0Alternate Hypothesis :
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Just as we used x  to estimate the true sample mean µ , we used p̂  to esti-
mate the true sample proportion p . In our example, p̂  represents the pro-
portion of eligible patients whose blood pressure is under control according 
to the measure definition. The hypothesized value 0p  is the national pro-
portion of patients whose blood pressure is under control. We’ll use a one-
sample z-test for proportions. For reference, the left- and two-tailed test can 
be represented as < 0p p  and ≠ 0p p .

To determine the test statistic, we must calculate the standard error. As 
with the one-sample test for means, the numerator of our test considers the 
difference in the two sample values, while the denominator is comprised of 
the standard error. For a one-sample test for proportion, the standard error 

is calculated as ( )−0 01p p

n
 where n  represents the number of observations 

within the sample (i.e., physician office visits).
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It should be noted that a t-test for proportions exists, but in practice, the z-test 
is much more prevalent. To compute the z-statistic and p-value in Python, we 
can use the proportions_ztest function from the statsmodels.stats.proportion 
subpackage.

import numpy as np
from statsmodels.stats.proportion import 
proportions_ztest

bp_under_control = 64
hypertension_pat = 100

null_hypothesis_proportion = .603

alpha = 0.05

z_statistic, p_value = proportions_ztest(bp_under_
control, hypertension_pat, null_hypothesis_proportion)

if p_value < alpha:
    print("Reject the null hypothesis in favor of the 
alternate hypothesis.")
else:
    print("Fail to reject the null hypothesis.")

Using R, we can use the prop.test function for convenience.

bp_under_control <- 64
hypertension_pat <- 100
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null_hypothesis_proportion <- 0.603

alpha <- 0.05

test_result <- prop.test(x = bp_under_control, n = 
hypertension_pat, p = null_hypothesis_proportion, 
alternative = "greater", correct = FALSE)

p_value <- test_result$p.value

if (p_value < alpha) {
  print("Reject the null hypothesis in favor of the 
alternate hypothesis.")
} else {
  print("Fail to reject the null hypothesis.")
}

When there isn’t enough data to satisfy the assumptions of a one-sample 
test for proportions, it might be worth considering a test that falls under the 
category of exact tests or nonparametric tests, such as Fisher's Exact Test. 
These tests do not rely heavily on distributional assumptions and are often 
used when data is limited or doesn’t meet the assumptions of traditional 
parametric tests.

Two-Sample Test for Proportions

Similar to the two-sample test for means, there are times when we are inter-
ested in testing for differences between two independent samples of propor-
tion data. Consistent with the previous tests, the null hypothesis assumes 
no difference in the proportions, while the alternate hypothesis asserts that 
there is a statistically significant difference—with an option for a left-, right-, 
or two-tailed test.

In the section on hypothesis testing, we discussed comparing the propor-
tion of surgical site infections between two time periods. Let’s revisit this 
example. To ensure a sufficient sample size, we will compare the proportion 
of SSIs in a large hospital’s medical/surgical ward between the current and 
previous years. We are interested in whether the proportion of SSIs this year 
differs from the previous year. We will conduct a two-tailed test.

	 =H p p0 1 2Null :

	 ≠aH p p1 2Alternate : Two Tail :

For reference, a left- and right-tailed test would take the form of <1 2p p  and 
>1 2p p , respectively.
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To compute the test statistic, we must estimate the standard error of the dif-

ference by combining the variance from the two samples ( ) − + 
 1 2
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The pooled sample proportion p̂  is the combined proportion of successes 
from both samples over the total combined sample size, considering the pro-
portions from both groups.

Python

To compute the z-statistic and p-value, we can again use the propor-
tions_ztest function from the statsmodels.stats.proportion 
subpackage.

import numpy as np
from statsmodels.stats.proportion import 
proportions_ztest
current_year_ssi = 15
current_year_n = 394

previous_year_ssi = 11
previous_year_n = 351

ssi_counts = np.array([current_year_ssi, 
previous_year_ssi])
sample_sizes = np.array([current_year_n, 
previous_year_n])

alpha = 0.05

z_statistic, p_value = proportions_ztest(ssi_counts, 
sample_sizes, alternative = 'larger')

if p_value < alpha:
    print("Reject the null hypothesis in favor of the 
alternate hypothesis.")
else:
    print("Fail to reject the null hypothesis.")
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R
Again we will use the prop.test function in the R implementation.

current_year_ssi <- 15
current_year_n <- 394

previous_year_ssi <- 11
previous_year_n <- 351

alpha <- 0.05

test_result <- prop.test(c(current_year_ssi, previous_
year_ssi), c(current_year_n, previous_year_n), 
alternative = "greater", correct = FALSE)

p_value <- test_result$p.value

if (p_value < alpha) {
  print("Reject the null hypothesis in favor of the 
alternate hypothesis.")
} else {
  print("Fail to reject the null hypothesis.")
}

It’s important to note that the prop.test function in R has a correct 
argument, which applies a “continuity correction”. This correction helps 
improve the accuracy of the results by accounting for the slight differences 
between continuous and discrete distributions, particularly when sample 
sizes are small, or the proportion is near 0 or 1.

Chi-Square Test

How do we conduct a hypothesis test when comparing categorical data? In 
most cases, we can employ a chi-square test.

The test involves comparing the observed frequencies in each category of 
a contingency table with the frequencies expected under the assumption of 
independence between the variables. The resulting test statistic follows a 
chi-square distribution.

Let’s start with some test data in the form of a 2 × 2 (or “two by two”) table 
showing patient counts for patients with and without a history of bariatric 
surgery for weight loss, segmented further by those with subsequent devel-
opment of osteoporosis (Table 3.2).

To begin, we must calculate expected values corresponding to each 
observed value in the 2 × 2 table. The expected value E  is calculated for each 
row i and column j and is represented as ijE . Specifically, we obtain ijE  by 
dividing the product of the row and column totals by the grand total:

	

×
=

row total column total
grand total

ijE
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ijE  is therefore an estimate of the expected counts. For demonstration, 
expected values are calculated using the osteoporosis data from Table 3.2 
and are shown in Table 3.3.

The chi-square test evaluates whether there is a significant association 
between two categorical variables. Now that we have the expected values 
calculated, we can calculate the chi-square test statistic χ 2  as follows:

	

( )
χ

−
= ∑

2

2 ij ij

ij

O E

E

The chi-square statistic is a test statistic similar to a z- or t-statistic discussed in 
the chapter on hypothesis testing. Rather than a z- or t-distribution, however, 
we are assuming in this case that the test statistic follows a chi-square distri-
bution. Again, using our working example, we can calculate the chi-square 
test statistic as follows:

To obtain the chi-square statistic, we simply sum overall cells in the 
contingency table (Table 3.4).

	 χ = + + +2 a b c d

Or in our example:

	 = + + +40 49 39 53 0 45 0 51 006~ . . . . .

TABLE 3.3

Calculations for the Expected Values Used within a Chi-Square Test

Exposure
New Cases 

(Osteoporosis) Controls (No Osteoporosis) Total

Had bariatric 
surgery

0.51 = (45 × 40)/3500 44.49 = (45 ×3,460)/3500 45

Did not have 
bariatric surgery

39.49 = (3,455 × 40)/3500 3,415.51 = (3,455 ×3,460)/3500 3,455

Total 40 3,460 3,500

TABLE 3.2

An Example of a 2 × 2 Contingency Table

Exposure
New Cases 

(Osteoporosis)
Controls (No 
Osteoporosis) Total

Had bariatric surgery 5 40 45
Did not have bariatric surgery 35 3,420 3,455
Total 40 3,460 3,500
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Like other hypothesis tests, the p-value can be obtained with the test statistic 
and degrees of freedom. Luckily, we have fantastic Python libraries to help 
us derive the values—in this case, the scipy.stats library.

from scipy.stats import chi2_contingency
contingency_table = [[5, 40], [35, 3420]]

chi2, p, dof, expected = 
chi2_contingency(contingency_table,correction=False)

print(f"Chi-square Statistic: {chi2:.2f}")
print(f"P-value: {p:.2f}")
print(f"DOF: {dof:.2f}")
print(f"Expected: {expected}")

And in R, the chi-square statistic can be calculated with the native chisq.
test function.

contingency_table <- matrix(c(5, 40, 35, 3420), nrow = 2, 
byrow = TRUE)

test_result <- chisq.test(contingency_table, correct = 
FALSE)

cat("Chi-square Statistic:", round(test_result$statistic, 
2), "\n")
cat("P-value:", round(test_result$p.value, 2), "\n")
cat("Degrees of Freedom:", test_result$parameter, "\n")
cat("Expected Frequencies:\n")
print(test_result$expected)

In this implementation, we use the chisq.test function in R to per-
form a chi-squared test on a contingency table. The matrix function cre-
ates the table with nrow = 2 to specify two rows, and byrow = TRUE 
ensures that the data is entered into the matrix row by row, meaning the 
first two values form the first row, the next two values form the second 
row, and so on.

TABLE 3.4

Calculations of Final Quadrant Values with a Chi-Square Test

Exposure New Cases (Osteoporosis) Controls (No Osteoporosis)

Had bariatric surgery
( )2
5 0.51

39.53
.51
−

=
( )2
40 44.49

.45
44.49
−

=

Did not have bariatric 
surgery

( )2
35 39.49

.51
39.49
−

=
( )2
3420 3, 415.51

.006
3415.51
−

=
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With a p-value of <.001, we can reject our null hypothesis stating that there 
is no association between osteoporosis incidence and bariatric surgery.

Fisher Exact Test

One limitation of the Chi-square test is that it can produce volatile results 
when counts in any one quadrant are small (where less than 5 or 10). The 
Fisher exact test is a great alternative that can be used to determine the 
statistical significance of the association between two categorical vari-
ables (e.g., exposure and disease), especially when sample sizes are small. 
The test calculates the probability of observing a distribution as extreme 
as, or more extreme than, the observed distribution, given the totals of 
the table. It is particularly useful for small sample sizes and when exact 
probabilities are needed, but it may become computationally intensive 
for larger tables. The nuances of the test are beyond the scope of this 
book; however, an implementation in Python and R have been provided 
below:

Python

from scipy.stats import fisher_exact

contingency_table = [[5, 40], [35, 3,420]]

odds_ratio, p_value = fisher_exact(contingency_table)

print(f"Odds Ratio: {odds_ratio}")
print(f"P-value: {p_value}")

R

contingency_table <- matrix(c(5, 40, 35, 3420), nrow = 2, 
byrow = TRUE)
test_result <- fisher.test(contingency_table)

cat("Odds Ratio:", test_result$estimate, "\n")
cat("P-value:", test_result$p.value, "\n")

Checking Assumptions

We must check our assumptions for all statistical tests to ensure that we’re 
using the test as intended. These are parametric tests that are built under 
the assumption that certain data conditions are present. Incorrect use of 
the test can lead to erroneous conclusions, ultimately harming the patient 
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or resulting in wasteful care. Some assumptions are firm, while others are 
flexible, and it is essential to have a firm grasp of these assumptions before 
selecting the type of test. Assumptions for each test are listed at the top of 
Tables 3.5–3.11.

When Normality Assumptions Are Violated

In healthcare analysis, hypothesis testing is commonly used to compare 
patient outcomes, such as length of stay and cost. Hospital administrators 
might want to know if an operational improvement has reduced the overall 
length of stay or if switching contracts on a particular supply has resulted in 
material savings.

A challenge with using length of stay and cost data, as well as similarly dis-
tributed data, is that they exhibit a rightward skewed distribution (i.e., the data 
has a long tail to the right). While hypothesis tests are somewhat resilient to 
skewed data, we can apply a natural log transformation to mitigate potential 
bias resulting from skewed data. This correction technique will often coerce 
the data into a normal distribution, allowing standard z-tests and t-tests to be 
applied to the data with less concern about normality assumptions.

The test statistic will be computed just as before; however, as a preprocess-
ing step, a log transformation will be applied to the data points (such as a 
patient’s length of stay or cost).

Below is an example of a one-sample t-test for means using log-transformed 
cost data for CPAP machine values. This distribution is slightly rightward 
skewed, with some high-cost outliers. A log transformation will mitigate the 
effect of the extreme values by coercing the distribution closer to normal, 
satisfying our test assumptions.

Python

import numpy as np
import scipy.stats as stats
cpap_cost = np.array([120, 150, 100, 180, 400, 350, 300, 
320, 310, 200, 180, 220, 110, 150, 640, 400, 280, 130, 
480, 250,
160, 370, 430, 810, 160, 1300, 500, 1230, 400, 140, 220, 
1150, 270, 120, 250, 210, 180, 190, 240, 140, 380, 290, 
230, 140, 480, 200, 130, 330, 370])

sample_log_cpap_cost = np.log(cpap_cost)
population_log_cpap_mean = np.log(375)

alpha = 0.05
t_statistic, p_value = stats.ttest_1samp(sample_log_cpap_
cost, population_log_cpap_mean, alternative='two-sided')
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if p_value < alpha:
    print("Reject the null hypothesis")
else:
    print("Fail to reject the null hypothesis")

R

cpap_cost <- c(120, 150, 100, 180, 400, 350, 300, 320, 
310, 200, 180, 220, 110, 150, 640, 400, 280, 130, 480, 
250,
               160, 370, 430, 810, 160, 1300, 500, 1230, 
400, 140, 220, 1150, 270, 120, 250, 210, 180, 190, 240,
               140, 380, 290, 230, 140, 480, 200, 130, 
330, 370)

log_cpap_cost <- log(cpap_cost)

population_log_cpap_mean <- log(375)

alpha <- 0.05

test_result <- t.test(log_cpap_cost, mu = population_log_
cpap_mean, alternative = "two.sided")

cat("t-statistic:", round(test_result$statistic, 2), 
"\n")
cat("p-value:", round(test_result$p.value, 4), "\n")

if (test_result$p.value < alpha) {
  cat("Reject the null hypothesis\n")
} else {
  cat("Fail to reject the null hypothesis\n")
}

For wildly irregular distributions (e.g., multi-modal, extreme skew), 
other “non-parametric” tests, such as the Mann Wilcoxon Rank-Sum or the 
Kruskal-Wallis test, can be considered. These tests are outside this book’s 
scope, but it is important to know that there is further recourse when such 
conditions exist in the data.

Statistical Significance Versus Practical Significance

One criticism of hypothesis testing is that any test will become significant 
with a large enough sample. Access to large datasets is commonplace today, 
and it is not unusual to have samples in the thousands, hundreds of thou-
sands, or millions (or more). As the sample size increases, the standard error 
incrementally shrinks, causing such tests to be highly sensitive to minuscule 
changes in the means. While such changes may be statistically significant, 
they may not be practically significant. Here is one area where statistics is a bit 
of an art form and a science.
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Practical significance expresses the meaningfulness or importance of dif-
ferences in statistical analysis. While statistical significance indicates whether 
an effect is likely due to chance, practical significance assesses whether the 
effect has any meaningful impact in a practical context.

Calculating practical significance often involves considering the effect size, 
which quantifies the magnitude of the observed difference or relationship. 
When testing with large samples, it is worth considering including a mea-
sure of effect size and statistical significance. There are various methods to 
measure effect size. Cohen’s d is a commonly employed method that takes 
the following form.

	

−= 1 2

p

x x
d

s

	

( ) ( )− × + − ×
=

+ −
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where d  is Cohen’s d, which is calculated as the difference between two 
group means divided by pooled standard deviation ps . Given its relative 
nature, it is suggested that Cohen’s d is described with loose terminology. 
There are several recommendations in the literature to describe Cohen’s d. 
One option is to report a difference of around 0.2 as “small” indicating a 
relatively small difference or effect, 0.05 as “medium” indicating a moderate 
effect, and 0.8 or higher as “large” indicating a substantial effect.

Perhaps we’re measuring the cognitive function scores of a group of nurs-
ing home patients before and after a series of cognitive exercises. We might 
be interested in the magnitude of the difference, measured through practical 
and statistical significance. An implementation of Cohen’s d in Python and R 
using this representative example is as follows:

Python

import numpy as np

before_training = np.array([25, 28, 22, 23, 26, 27, 20, 
24, 21, 29])
after_training = np.array([30, 32, 26, 28, 31, 33, 25, 
29, 27, 34])

mean_before = np.mean(before_training)
mean_after = np.mean(after_training)
std_before = np.std(before_training, ddof=1)  # ddof=1 
for sample standard deviation
std_after = np.std(after_training, ddof=1)
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pooled_std = np.sqrt(((len(before_training)-1) * std_
before**2 + (len(after_training)-1) * std_after**2) / 
(len(before_training) + len(after_training) - 2))
cohens_d = (mean_after - mean_before) / pooled_std
print("Cohen's d: {:.2f}".format(cohens_d))

R
We can use the effsize package in R for a simplified implementation.

library(effsize)

before_training <- c(25, 28, 22, 23, 26, 27, 20, 24, 21, 
29)
after_training <- c(30, 32, 26, 28, 31, 33, 25, 29, 27, 
34)

cohen_result <- cohen.d(before_training, after_training, 
pooled = TRUE)

print(cohen_result)

Odds ratios, risk differences, and risk ratios are other examples of effect 
size measures, which we will discuss in more detail in the Chapter 7.

For now, it is important to remember that practical significance can vary 
depending on the situation. An effect considered practically significant in 
one context might not be in another. Balancing statistical significance and 
practical significance helps ensure that research findings have real-world 
relevance and are not just statistically detectable but also meaningful and 
actionable.

Corrections for Multiple Tests

It is not uncommon to conduct multiple tests on a variable of interest. 
However, we must be cautious in these scenarios, as more tests increase the 
likelihood of finding a spurious relationship in the data—that is, the chances 
of obtaining a Type I error rise considerably.

Let’s consider a situation in which an analyst evaluates the effectiveness 
of a medical intervention on various process measures using the PQRS 
(Physician Quality Reporting System) measure set, which is used within the 
MIPS program.

The analyst is evaluating the potential impact of an educational interven-
tion on physicians’ adherence to three different process measures, evaluating 
adherence to 1) blood pressure screening guidelines, 2) influenza vaccination 
recommendations, and 3) tobacco cessation counseling guidelines.
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He decides to conduct separate hypothesis tests to determine whether the 
intervention significantly affects each process measure’s adherence rate. For 
each test, he sets a conventional significance level of α = 0.05; however, if 
these tests are performed without any correction, the cumulative chance of 
making at least one Type I error across all three tests increases, leading to a 
larger familywise error rate (FWER). The familywise error rate refers to the 
probability of making at least one Type I error in a set of multiple hypoth-
esis tests—incorrectly rejecting our null hypothesis in favor of the alternate 
hypothesis. When conducting multiple hypothesis tests simultaneously, 
there’s an increased chance of observing at least one significant result by 
random chance, even if all null hypotheses are true. The familywise error 
rate controls this overall error rate to maintain the overall significance 
level of the tests. With three tests, the uncorrected familywise error rate is 
1 − (1 − α)3, or .143, which is greater than the desired overall significance 
level of 0.05. This means there is a higher chance of making a false discovery 
across all tests.

The most common approach to controlling the familywise error rate is to 
apply a correction method to the individual p-values obtained from the indi-
vidual tests. The Bonferroni correction can be used to control for the family-
wise error rate. For each test, the desired overall significance level (α = 0.05) 
is divided by the number of tests (three in this case), resulting in a corrected 
significance level of α == =0 05 3 0 0167Bonferroni . / . .

Using the Bonferroni correction lowers the chance of making a Type I error 
across all tests while maintaining a more stringent threshold for each test. 
This helps ensure that the overall familywise error rate remains below the 
desired level and that the evaluation of the process measures is more reliable. 
More robust correction methods, such as the Holm-Bonferroni method, can 
also be considered (a correction that does not make the assumption that all 
variables are independent).

Considering Case Mix

We have been evaluating the crude mean or proportion of patient events 
in many of the examples above. If we assume that the patient mix (i.e., 
the clinical and demographic distributions of the patient population) 
between the two evaluated values are the same, then such tests can be 
useful. In many cases, however, we cannot assume that the populations 
are comparable. An entire chapter on “Risk Standardization” is dedicated 
to this subject later in this book. For now, it is important to be aware of 
the concept of patient mix and the dangers of misleading or incorrect con-
clusions that can occur if the populations being compared are materially 
different.
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TABLE 3.5

One-Sample z-Test for Means

Assumptions:
	•	 The population standard deviation σ  is known
	•	 The population distribution is approximately normal or the number of samples is n ≥ 30

Set Up Hypothesis Python Implementation R Implementation

Null Hypothesis (H0): 
0=µ µ

Alternate Hypothesis 
(Ha):

Left Tail: 0µ µ<

Right Tail: 0µ µ>

Two Tail: 0µ µ≠
Set the Significance 
Level

.05α =
Calculate Test 
Statistic

0x
z

n

µ
σ
−

=

Calculate the p-value

Left Tail: ( )p P Z z= ≤
Right Left: 

( )p P Z z= ≥

Two Tail: 

( )2p P Z z= × ≥

Make a decision
Reject Null if p α<

import numpy as np
from scipy.stats import norm
data = np.array([10.2, 9.8, 10.4, 10.0, 
10.1, 10.3, 9.9])
hypothesized_mean = 10.0
sample_mean = np.mean(data)
sample_std = np.std(data, ddof=1)
#Set Significance Level
alpha = .05
#Calculate Test Statistic
test_statistic = (sample_mean - 
hypothesized_mean) / (sample_std / 
np.sqrt(len(data)))
#Calculate p-Value
#Left Tail:
p_value = norm.cdf(test_statistic)
#Right Tail
p_value = 1 - norm.cdf(test_statistic)
#Two Tail:
p_value = 2 * (1 - norm.
cdf(abs(test_statistic)))
Make a Decision
if p_value < alpha:
print("Reject the null hypothesis.")
else:
 print("Fail to reject the null 
hypothesis.")

data <- c(10.2, 9.8, 10.4, 10.0, 10.1, 10.3, 
9.9)
hypothesized_mean <- 10.0
sample_mean <- mean(data)
sample_std <- sd(data)
sample_size <- length(data)
# Set significance level
alpha <- 0.05
# Calculate the test statistic
test_statistic <- (sample_mean - 
hypothesized_mean) / (sample_std / 
sqrt(sample_size))
#Calculate p-Value
#Left Tail:
p_value <- pnorm(test_statistic)
#Right Tail
# Calculate p-value for the right tail
p_value <- 1 - pnorm(test_statistic)
#Two Tail:
p_value <- 2 * (1 
- pnorm(abs(test_statistic)))
# Make a decision
if (p_value < alpha) {
 print("Reject the null hypothesis.")
} else {
 print("Fail to reject the null 
hypothesis.")}
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TABLE 3.6

One-Sample t-Test for Means

Assumptions:
	•	 The population standard deviation σ  is unknown.
	•	 The sample distribution is approximately normal or the number of samples is 30n < .

Set Up Hypothesis Python Implementation R Implementation

Null Hypothesis (H0): 
0µ µ=

Alternate Hypothesis (H0):
 Left Tail: 0µ µ<
 Right Tail: 0µ µ>
 Two Tail: 0µ µ≠
Set the Significance Level

.05α =
Calculate Test Statistic

0x
t

s
n

µ−
=

Calculate the p-value

Left Tail: ( )p P T t= ≤

Right Tail: ( )p P T t= ≥

Two Tail: ( )2p P T t= × ≥

Make a decision
Reject 0H  if p α<

import numpy as np
from scipy.stats import ttest_1samp
data = np.array([10.2, 9.8, 10.4, 
10.0, 10.1, 10.3, 9.9])
hypothesized_mean = 10.0
#Set significance level
alpha = .05
#Calcualte test statistic
#Left Tail:
t_statistic, p_value = 
ttest_1samp(data, hypothesized_mean, 
alternative='less')
#Right Tail:
t_statistic, p_value = 
ttest_1samp(data, hypothesized_mean, 
alternative='greater')
#Two Tail:
t_statistic, p_value = 
ttest_1samp(data, hypothesized_mean, 
alternative='two-sided')
#Make a decision
if p_value < alpha:
 print("Reject the null hypothesis.")
else:
 print("Fail to reject the null 
hypothesis.")

data <- c(10.2, 9.8, 10.4, 10.0, 10.1, 10.3, 
9.9)
hypothesized_mean <- 10.0
# Set significance level
alpha <- 0.05
# Perform one-sample t-tests
# Left Tail
test_left <- t.test(data, mu = hypothesized_
mean, alternative = "less")
# Right Tail
test_right <- t.test(data, mu = hypothesized_
mean, alternative = "greater")
# Two-Tail (
test_two_tail <- t.test(data, mu = 
hypothesized_mean, alternative = "two.sided")
# Access the p_value
p_value <- test_left$p.value
p_value <- test_right$p.value
p_value <- test_two_tail$p.value
#Make a decision
if (p_value < alpha) {
 print("Reject the null hypothesis.")
} else {
 print("Fail to reject the null hypothesis..")
}
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TABLE 3.7

Two-sample t-test for Means (Pooled Variance)

Assumptions:
	•	 The standard deviation for 1σ  and 2σ  is unknown.
	•	 The samples are independent.
	•	 The sample distributions for the two samples are approximately normal.
	•	 The variance across the two samples is equal.

Set Up Hypothesis Python Implementation R Implementation

Null Hypothesis 
( )0 1 2: 0H µ µ− =

Alternate Hypothesis ( )aH :
Left Tail: 1 2 0µ µ− <

Right Tail: 1 2 0µ µ− >
Two Tail: 1 2 0µ µ− =
Set the Significance Level

.05α =
Calculate Test Statistic

( ) ( )2 2
1 1 2 2

1 2

1 1
2

− + −
=

+ −
p

n s n s
s

n n

− −
=

+

1 2

1 2

0

1 1
p

x x
t

s
n n

Calculate the p-value

Left Tail: ( )p P T t= ≤

Right Tail: ( )p P T t= ≥

Two Tail: ( )2p P T t= × ≥

Make a decision
Reject 0H  if p α<

import numpy as np
from scipy.stats import ttest_ind
group1 = np.array([23, 27, 30, 25, 28])
group2 = np.array([18, 20, 22, 17, 21])
#Set the significance level
alpha = 0.05
# Left Tail
t_statistic, p_value = 
ttest_ind(group1, group2, 
alternative='less',equal_var=True)
# Right Tail
t_statistic, p_value = 
ttest_ind(group1, group2, 
alternative='greater',equal_var=True)
# Two Tail
t_statistic, p_value = 
ttest_ind(group1, group2, 
alternative='two-sided',equal_var=True)
# Make a Decision
if p_value < alpha:
 print("Reject the null hypothesis.")
else:
 print("Fail to reject the null 
hypothesis.")
)

# Data setup
group1 <- c(23, 27, 30, 25, 28)
group2 <- c(18, 20, 22, 17, 21)
# Set significance level
alpha <- 0.05
# Perform two-sample t-tests
# Left Tail
test_left <- t.test(group1, group2, 
alternative = "less", var.equal = TRUE)
# Right Tail
test_right <- t.test(group1, group2, 
alternative = "greater", var.equal = TRUE)
# Two-Tail
test_two_tail <- t.test(group1, group2, 
alternative = "two.sided", var.equal = TRUE)
#Access the p value
p_value <- test_left$p.value
p_value <- test_right$p.value
p_value <- test_two_tail$p.value
# Make a decision
if (p_value < alpha) {
 print("Reject the null hypothesis.")
} else {
 print("Fail to reject the null 
hypothesis.")
}
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TABLE 3.8

Two-sample t-test for Means (Unpooled Variance)

Assumptions:
	•	 The standard deviation for 1σ  and 2σ  is unknown.
	•	 The samples are independent (each observation in one group should not be influenced by or dependent on observations in the other group).
	•	 The sample distributions for the two samples are approximately normal.
	•	 The variance across the two samples is not equal.

Set Up Hypothesis Python Implementation R Implementation

Null Hypothesis ( )0H :
− =1 2 0µ µ

Alternate Hypothesis ( )aH :

Left Tail: − <1 2 0µ µ
Right Tail: − >1 2 0µ µ
Two Tail: − =1 2 0µ µ
Set the Significance Level

= .05α
Calculate Test Statistic

− −
=

+

1 2

2 2
1 2

1 2

0x x
t

s s

n n

Calculate the p-value

Left Tail: ( )= ≤p P T t

Right Tail: ( )= ≥p P T t

Two Tail: ( )= × ≥2p P T t

Make a decision
Reject 0H  if <p α

import numpy as np
from scipy.stats import ttest_ind
group1 = np.array([23, 27, 30, 25, 28])
group2 = np.array([18, 20, 22, 17, 21])
# Set the significance level
alpha = 0.05
# Left Tail
t_statistic, p_value = 
ttest_ind(group1, group2, 
alternative='less',equal_var=False)
# Right Tail
t_statistic, p_value = 
ttest_ind(group1, group2, 
alternative='greater',equal_var=False)
# Two Tail
t_statistic, p_value = 
ttest_ind(group1, group2, 
alternative='two-sided',equal_var=False)
# Make a decision
if p_value < alpha:
 print("Reject the null hypothesis.")
else:
 print("Fail to reject the null 
hypothesis.")

# Data setup
group1 <- c(23, 27, 30, 25, 28)
group2 <- c(18, 20, 22, 17, 21)
# Set significance level
alpha <- 0.05
# Perform independent two-sample t-tests
# Left Tail
test_left <- t.test(group1, group2, 
alternative = "less", var.equal = FALSE)
# Right Tail
test_right <- t.test(group1, group2, 
alternative = "greater", var.equal = FALSE)
# Two-Tail
test_two_tail <- t.test(group1, group2, 
alternative = "two.sided", var.equal = 
FALSE)
# Access p-values
p_value <- test_left$p.value
p_value <- test_right$p.value
p_value <- test_two_tail$p.value
# Make a decision
if (p_value < alpha) {
 print("Reject the null hypothesis.")
} else {
 print("Fail to reject the null 
hypothesis.")
}
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TABLE 3.9

Paired Difference t-test for Means

Assumptions:
	•	 The distribution of the differences is approximately equal
	•	 The number of pairs is 30≥

Set Up Hypothesis Python Implementation R Implementation

Null Hypothesis ( )0H :
0dµ =

Alternate
Hypothesis ( )aH :
Left Tail: 0dµ <
Right Tail: 0dµ >
Two Tail: 0dµ ≠
Set the Significance 
Level
α  =.05
Calculate Test 
Statistic

0d
t

s
n

−
=

Calculate the p-value
Left Tail: ( )p P T t= ≤

Right Tail: 
( )p P T t= ≥

Two Tail: 
( )2p P T t= × ≥

Make a Decision
Reject 

0H  if p α<

import numpy as np
from scipy.stats import ttest_rel
# Data for paired samples
before = np.array([12.2, 11.8, 10.4, 
11.0, 10.5])
after = np.array([11.0, 11.5, 9.8, 
10.0, 9.5])
#Set significance level
alpha = 0.05
# Calculate test statistic and p-value
# Left tail
t_statistic, p_value = ttest_
rel(before, after, alternative='less')
# Right tail
t_statistic, p_value = 
ttest_rel(before, after, 
alternative='greater')
# Two tail
t_statistic, p_value = 
ttest_rel(before, after, 
alternative='two-sided')
# Make a decision
if p_value < alpha:
 print("Reject the null hypothesis in 
favor of the alternate hypothesis.")
else:
 print("Fail to reject the null 
hypothesis.")

before <- c(12.2, 11.8, 10.4, 11.0, 10.5)
after <- c(11.0, 11.5, 9.8, 10.0, 9.5)
# Set significance level
alpha <- 0.05
# Perform paired t-tests
# Left Tail
test_left <- t.test(before, after, 
paired = TRUE, alternative = "less")
# Right Tail
test_right <- t.test(before, after, 
paired = TRUE, alternative = 
"greater")
# Two-Tail
test_two_tail <- t.test(before, after, 
paired = TRUE, alternative = "two.
sided")
# Access p-values
p_value <- test_left$p.value
p_value <- test_right$p.value
p_value <- test_two_tail$p.value
# Make a decision
if (p_value < alpha) {
 print("Reject the null hypothesis.")
} else {
 print("Fail to reject the null 
hypothesis.")
}
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TABLE 3.10

One-Sample z-Test for Proportions

Assumptions:
	•	 Have at least five successes and non-successes: 0 10np ≥  and ( )01 10n p− ≥

Set Up Hypothesis Python Implementation R Implementation

Null Hypothesis ( )0H :
0µ µ=

Alternate Hypothesis 
( )aH :

Left Tail: 0µ µ<
Right Tail: 0µ µ>
Two Tail: 0µ µ≠
Set the Significance 
Level

.05α =
Calculate Test 
Statistic

( )
0

0 0

ˆ

1

p p
z

p p

n

−
=

−

Calculate the p-value

Left Tail: 
( )p P Z z= ≤

Right Tail: 
( )p P Z z= ≥

Two Tail: 
( )2p P Z z= × ≥

Make a decision
Reject 0H  if p α<

import numpy as np
from statsmodels.stats.proportion import 
proportions_ztest
successes_sample = 25
sample_size = 100
null_hypothesis_proportion = 0.5
# Set the significance level
alpha = 0.05
# Calculate test statistic and p-value 
#Left Tail
z_statistic, p_value = proportions_
ztest(successes_sample, sample_
size, null_hypothesis_proportion, 
alternative='smaller')
# Right Tail
z_statistic, p_value = proportions_
ztest(successes_sample, sample_
size, null_hypothesis_proportion, 
alternative='larger')
# Two-tail
z_statistic, p_value = proportions_
ztest(successes_sample, sample_size, 
null_hypothesis_proportion)
# Make a decision
if p_value < alpha:
 print("Reject the null hypothesis in 
favor of the alternate hypothesis.")
else:
 print("Fail to reject the null 
hypothesis.")

successes_sample <- 25
sample_size <- 100
null_hypothesis_proportion <- 0.5
# Set the significance level
alpha = 0.05
# Calculate test statistic
test_two_tail <- prop.test(successes_sample, 
sample_size, p = null_hypothesis_proportion, 
alternative = "two.sided", correct = FALSE)
# Left Tail
test_left <- prop.test(successes_sample, 
sample_size, p = null_hypothesis_proportion, 
alternative = "less", correct = FALSE)
# Right Tail
test_right <- prop.test(successes_sample, 
sample_size, p = null_hypothesis_proportion, 
alternative = "greater", correct = FALSE)
# Extract p-values
p_value <- test_two_tail$p.value
p_value <- test_left$p.value
p_value <- test_right$p.value
# Make a decision
if (p_value < alpha) {
 print("Reject the null hypothesis.")
} else {
 print("Fail to reject the null hypothesis.")
}
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TABLE 3.11

Two-Sample z-test for Proportions

Assumptions:
	•	 Have at least ten successes and non-successes in each sample: ( ) ( )1 1 1 1 2 2 2 2, 1 , , 1 10− − ≥n p n p n p n p

Set Up Hypothesis Python Implementation R Implementation

 Hypothesis ( )0H :
1 2=p p

Alternate Hypothesis ( )aH :
Left Tail: 1 2p p<
Right Tail: 1 2p p>
Two Tail: 1 2p p≠
Set the Significance Level
α  =.05
Calculate Test Statistic

( )
1 2

1 2

ˆ ˆ

ˆ ˆ

0

1 1
1

− −
=

 
− + 

 

p p
z

p p
n n

+=
+

1 2

1 2

ˆ x x
p

n n
Calculate the p-value

Left Tail: ( )p P Z z= ≤

Right Tail: ( )p P Z z= ≥

Two Tail: ( )2p P Z z= × ≥

Make a Decision

Reject 0H  if p α<

import numpy as np
from statsmodels.stats.proportion import 
proportions_ztest
successes_sample1 = 45
sample_size1 = 150
successes_sample2 = 30
sample_size2 = 120
successes = np.array([successes_sample1, 
successes_sample2])
sample_sizes = np.array([sample_size1, 
sample_size2])
#Set the significance level
alpha = 0.05
# Calculate Test Statistic
# Left tail
z_statistic, p_value = proportions_
ztest(successes, sample_sizes, 
alternative='less’)
# Right tail
z_statistic, p_value = proportions_
ztest(successes, sample_sizes, 
alternative='greater')
# Two tail
z_statistic, p_value = proportions_
ztest(successes, sample_sizes, 
alternative='two-sided')

successes_sample1 <- 45
sample_size1 <- 150
successes_sample2 <- 30
sample_size2 <- 120
successes <- c(successes_sample1, 
successes_sample2)
sample_sizes <- c(sample_size1, 
sample_size2)
# Set significance level
alpha <- 0.05
# Left Tail Test
test_left <- prop.test(successes, 
sample_sizes, alternative = "less", 
correct = FALSE)
# Right Tail Test
test_right <- prop.test(successes, 
sample_sizes, alternative = "greater", 
correct = FALSE)
# Two-Tailed Test
test_two_tail <- prop.test(successes, 
sample_sizes, alternative = "two.
sided", correct = FALSE)

(Continued)
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Set Up Hypothesis Python Implementation R Implementation

# Make a decision
if p_value < alpha:
 print("Reject the null hypothesis in 
favor of the alternate hypothesis.")
else:
 print("Fail to reject the null 
hypothesis.")

# Extract the p-value
p_value<- test_left$p.value
p_value <- test_right$p.value
p_value <- test_two_tail$p.value
# Decision for each test
if (p_value < alpha) {
 cat("Reject the null 
hypothesis.")
} else {
 cat("Fail to reject the null 
hypothesis.")
}

TABLE 3.11  (CONTINUED)
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Additional Resources

Casella, G., & Berger, R. L. (2024). Statistical Inference (2nd ed.). Chapman & Hall/CRC 
Texts in Statistical Science.

Wasserman, L. (2010). All of Statistics: A Concise Course in Statistical Inference (Springer 
Texts in Statistics). Springer.
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4
Confidence Intervals

Sample means and proportions inherently have some degree of error. As men-
tioned in the previous Chapter, if we repeatedly sample the length of stay for 
30 med/surg patients, the mean of each sample can vary considerably. This 
variation across samples is a result of error in the sample itself and does not 
reflect any true difference in overall length of stay. While we cannot know the 
true population length of stay in many cases, we can estimate the range of val-
ues with some degree of confidence in which the population mean would exist 
(accounting for the potential error that we would expect from the sample). In 
the context of our length of stay example, an upper and lower 95% confidence 
interval would provide a range of length of stay values in which the true popu-
lation mean would exist. We can state that we are 95% confident that the true 
length of stay is within the upper and lower confidence limits.

A confidence interval is calculated by padding the sample statistic (e.g., a 
sample mean or proportion) with a margin of error. for example, the confi-
dence interval of a sample mean can be expressed as follows:

	 ±margin of errorx

While a proportion might be expressed as

	 ±margin of errorp̂

Furthermore, the margin of error itself is formed from two components—a 
multiplier and standard error:

	 = ×margin of error multipler standarderror

The multiplier and the standard error are combined to form the overall mar-
gin of error. Let’s look at the confidence interval for a sample mean (such as 
length of stay) as an example.

http://dx.doi.org/10.1201/9781003609759-4
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Here x  is the sample statistic (or sample mean). The margin of error 
s×2a /z
n

 is comprised of the multiplier 2a /z  and standard error 
s
n

. Recall 

that if we take repeated samples and calculate the means of each of those sam-
ples, the standard deviation of those means approximates the standard error.

A rule about standard deviations (or standard errors when evaluating 
means) is that 95% of the sample means will be within approximately two 
(closer to 1.96 to be more precise) standard deviations from the true mean. 
Let’s look at the below figure to help us untangle this mess (Figure 4.1).

Here, we show five samples each comprised of 30 med/surg patients. For 
each of the 30 patients, we calculate a mean and standard deviation (as indi-
cated by the dot and whiskers below the curve). If we repeated these samples 
100 times, roughly 95% of the sample means would be within two standard 
deviations (or standard errors) of the true mean (indicated by the z = 1.96 
boundaries on the curve). The multiplier indicates the number of standard 
deviations from the mean we set based on our desired confidence level.

When deciding on the multiplier, a helpful estimate is to use the 68-95-99.7 
rule, which states that approximately 68% of the data will be within one stan-
dard deviation and 95% will be within two standard deviations. If we want 
to be 99.7% confident that the true mean is within our confidence intervals, 
our multiplier would be increased to a value closer to 3.

Of course, these are rough estimates of multipliers, and we can use soft-
ware (or tables) to identify a more precise multiplier.

Below is an example of computing a z-score of 1.96 (approximately 2) with 
a 95% confidence level in Python

import scipy.stats as st
confidence_level = .95
z_score = st.norm.ppf(1 - (1 - confidence_level) / 2)

The stats.norm.ppf function is the probability mass function for a 
normal distribution. The probability mass function gives us the z-score that 
marks the point in the distribution where 95% of the data is represented. This 
intuitively seems correct, but it is not! We are interested in the margin of error 

̅ ± ⁄ ×
√

Margin of Error

Sample 
Statistic

Multiplier

Standard 
Error
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on both sides (recall that we add and subtract the margin of error to deter-
mine the confidence interval), and therefore, we must split the 5% to both 
tails. Said another way, we want to identify the 97.5% of data on each side 
of the distribution to obtain a left and right confidence interval computed by  
1 − (1 − confidence level)/2. We will also see the z value represented in nota-
tion as 2a /z  which denotes the splitting of alpha (e.g., .05) to each side.

Equivalently in R, we can use the qnorm function analogous to stats.
norm.ppf in Python to calculate the cumulative probability (assuming an 
normal distribution):

confidence_level <- 0.95
z_score <- qnorm(1 - (1 - confidence_level) / 2)

Let’s walk through a representative example using proportion data. A fam-
ily practice physician has implemented some operational changes to ensure 
that diabetic patients receive kidney health evaluation during their office visits 
(a MIPS-eligible measure). Upon implementing the new policy, the physician 
begins evaluating measure compliance—that is, the proportion of diabetic 
patients receiving kidney health evaluations. The sample size is small, and 
she knows there will be some degree of error in the sample proportion. She 

FIGURE 4.1
An example of a 95% confidence interval using a normal distribution.
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conducts a confidence interval the week after the policy change and each 
week thereafter to understand the error range in the observed proportion. In 
the first week, the physician saw nine diabetic patients and, of those patients, 
conducted seven kidney health evaluations.

As shown in Table 4.1, the error range (or confidence interval) in the first 
week is quite large, with a confidence interval ranging from .506 to .999. 
Given the range of error with this estimate, she reserves judgment. With each 
week, the cumulative number of people with diabetes seen increases until 
week five, where she has evaluated 61 out of 73 diabetic patients. By this 
point, the confidence interval has narrowed considerably, ranging from .751 
to .920 for a sample mean of .83. As the sample size increases (i.e., more dia-
betic patients are seen), the degree of error in our estimate will narrow.

A year passes, and measure compliance is reassessed. Having conducted 
647 evaluations out of 780 diabetic patients, she reports to her peers that 
measure compliance for kidney health evaluation for the year is 83%. She 
qualifies this statistic with “95% CI [80.3–85.6]”, indicating the confidence 
level (95%) and the confidence interval (CI) [80.3–85.6].

Her code is as follows:

import statsmodels.api as sm
from statsmodels.stats.proportion import proportion_ 
confint
proportion_confint(count=647, nobs=780, alpha=0.05)

which we can also write in R:

result <- prop.test(x = 647, n = 780, conf.level = 0.95)
result$conf.int

As with hypothesis tests, we must choose the most appropriate formula for 
the parameter we are attempting to estimate through the confidence interval. 
Table 4.2 can serve as a guide for the most common confidence interval sce-
narios. These tables contain the assumptions for each test, the formulas, and 
an example implementation using Python and R.

TABLE 4.1

Demonstration of Narrowing Confidence Intervals with Increased Sample Size

Week
Sample 

Proportion
Lower 
95% CI

Upper 
95% CI

Number of Kidney 
Health Evaluations

Number of Diabetic 
Patients Seen

1 0.778 .506 0.999 7 9
2 0.81 0.642 0.977 17 21
3 0.829 0.704 0.953 29 35
4 0.824 0.719 0.928 42 51
5 0.83 0.751 0.920 61 73
52 0.83 0.803 0.856 647 780
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TABLE 4.2

Confidence Interval Methods with Implementations in Python and R

CI Type Python Implementation R Implementation

Estimated Parameter:
Population mean m
Sample Statistic:
Sample mean x
Confidence Interval 
Formula:

/2± ×ax z
n
s

Assumptions:
The population 
standard deviation σ 
is known

The population 
distribution is 
approximately normal 
or the number of 
samples is n 30≥

import numpy as np
import scipy.stats as st
# Sample data
data = np.array([23, 27, 19, 31, 25, 29, 
22, 18, 24, 28])
# Known population standard deviation
known_std_dev = 4.5
# Set confidence level
confidence_level = 0.95
# Calculate sample mean
sample_mean = np.mean(data)
# Calculate the standard error
standard_error = known_std_dev / 
np.sqrt(len(data))
# Calculate the margin of error
z_score = st.norm.ppf(1 - (1 - confidence_
level) / 2)
margin_of_error = z_score * standard_error
# Calculate the confidence interval
lower_bound = sample_mean - margin_of_error
upper_bound = sample_mean + margin_of_error
print("Margin of Error:", margin_of_error)

print(f"Confidence Interval: ({lower_
bound:.3f}, {upper_bound:.3f})")

# Sample data
data <- c(23, 27, 19, 31, 25, 29, 22, 18, 
24, 28)
# Known population standard deviation
known_std_dev <- 4.5
# Set confidence level
confidence_level <- 0.95
# Calculate sample mean
sample_mean <- mean(data)
# Calculate the standard error
standard_error <- known_std_dev / 
sqrt(length(data))
# Calculate the z-score for the given 
confidence level
z_score <- qnorm(1 - (1 - confidence_level) 
/ 2)
# Calculate the margin of error
margin_of_error <- z_score * standard_error
# Calculate the confidence interval
lower_bound <- sample_mean 
- margin_of_error
upper_bound <- sample_mean + 
margin_of_error
cat("Margin of Error:", margin_of_error, 
"\n")

cat(sprintf("95%% Confidence Interval: 
(%.3f, %.3f)\n", lower_bound, upper_bound))
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(Continued)

Estimated Parameter:
Population mean μ
Sample Statistic:
Sample mean x
Confidence Interval 
Formula:

a −± ×/2, 1n
s

x t
n

Assumptions:
The population 
standard deviation σ 
is known

The population 
distribution is 
approximately normal 
or the number of 
samples is n ≥ 30

import numpy as np
from scipy import stats
# Sample data
data = np.array([22, 25, 28, 30, 32, 35, 
38, 40, 42, 45])
# Calculate sample mean, standard error, 
and degrees of freedom
sample_mean = np.mean(data)
standard_error = stats.sem(data)
degrees_freedom = len(data) - 1
# Calculate the 95% confidence interval
confidence_level = 0.95
confidence_interval = 
stats.t.interval(confidence_level, 
df=degrees_freedom, loc=sample_mean, 
scale=standard_error)
# Print results
print("Sample Mean (x̄):", sample_mean)
print("t-Statistic:", stats.t.ppf((1 + 
confidence_level) / 2, df=degrees_freedom))
print("95% Confidence Interval:", 
confidence_interval)

# Sample data for two groups
group_1 <- c(22, 25, 28, 30, 32)
group_2 <- c(38, 40, 42, 45, 48)
# Perform a two-sample t-test to get the 
confidence interval for the difference 
between means
t_test_result <- t.test(group_1, group_2, 
var.equal = FALSE, conf.level = 0.95)
# Print the results
cat("t-Score:", t_test_result$statistic, 
"\n")
cat("Degrees of Freedom:", t_test_
result$parameter, "\n")
cat("Margin of Error:", (t_test_
result$conf.int[2] - t_test_
result$estimate), "\n")

cat("95% Confidence Interval: (", t_
test_result$conf.int[1], ", ", t_test_
result$conf.int[2], ")\n", sep = "")

Estimated Parameter:
Difference in 
population means
−1 2m m

import numpy as np
from scipy import stats
# Sample data for two groups
group_1 = np.array([22, 25, 28, 30, 32])
group_2 = np.array([38, 40, 42, 45, 48])
# Calculate sample means and standard 
deviations
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CI Type Python Implementation R Implementation

Sample Statistic:
Difference in sample 
means
−1 2x x

Confidence Interval 
Formula:

− ± × +
2 2
1 2

1 2 /2
1 2

a
s s

x x t
n n

Assumptions:
The standard deviation 
for 1s  and 2s  is 
unknown

The samples are 
independent

The sample 
distributions for 
the two samples are 
approximately normal

The variance across the 
two samples is not 
equal

std_dev_1 = np.std(group_1, ddof=1)
std_dev_2 = np.std(group_2, ddof=1)
# Calculate degrees of freedom for unpooled 
variance t-test
degrees_freedom_1 = len(group_1) - 1
degrees_freedom_2 = len(group_2) - 1
# Calculate t-score for a 95% confidence 
interval
confidence_level = 0.95
t_score = stats.t.ppf((1 + confidence_
level) / 2, df=min(degrees_freedom_1, 
degrees_freedom_2))
# Calculate standard error of the 
difference between means
standard_error_diff = np.sqrt((std_
dev_1**2 / len(group_1)) + (std_dev_2**2 / 
len(group_2)))
# Calculate margin of error
margin_of_error = t_score * 
standard_error_diff
# Calculate confidence interval
mean_difference = mean_1 - mean_2
confidence_interval_lower = mean_difference 
- margin_of_error
confidence_interval_upper = mean_difference 
+ margin_of_error
print("Margin of Error:", margin_of_error)
print("95% Confidence Interval:", 
(confidence_interval_lower, 
confidence_interval_upper))

# Sample data for two groups
group_1 <- c(22, 25, 28, 30, 32)
group_2 <- c(38, 40, 42, 45, 48)
# Perform a two-sample t-test for unequal 
variances (Welch's t-test)
t_test_result <- t.test(group_1, group_2, 
var.equal = FALSE, conf.level = 0.95)
# Extract the relevant values
t_statistic <- t_test_result$statistic
degrees_freedom <- t_test_result$parameter
conf_int <- t_test_result$conf.int
mean_difference <-  
t_test_result$estimate[1] 
- t_test_result$estimate[2]
# Print the results
cat("t-Statistic:", t_statistic, "\n")
cat("Degrees of Freedom:", degrees_freedom, 
"\n")
cat("95% Confidence Interval for the 
difference:", conf_int[1], "to", conf_
int[2], "\n")

cat("Margin of Error:", (conf_int[2] - 
conf_int[1]) / 2, "\n")

TABLE 4.2  (CONTINUED)
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(Continued)

Estimated Parameter:
Difference in 
population means
m m−1 2

Sample Statistic:
Difference in sample 
means
−1 2x x

Confidence Interval 
Formula:

− ± ×1 2 /2 . .ax x t S E



( )
( )
−

+ −
=

+ −

2
1 1

2
2 2

1 2

1

1
. .

2

n s

n s
S E

n n
Assumptions:
The standard deviation 
for 1s  and 2s  is 
unknown

The samples are 
independent

The sample 
distributions for 
the two samples are 
approximately normal

The variance across the 
two samples is equal

import numpy as np
from scipy import stats
# Sample data for two groups
group_1 = np.array([22, 25, 28, 30, 32])
group_2 = np.array([38, 40, 42, 45, 48])
# Calculate sample means and standard 
deviations
mean_1 = np.mean(group_1)
mean_2 = np.mean(group_2)
std_dev_1 = np.std(group_1, ddof=1)
std_dev_2 = np.std(group_2, ddof=1)
# Calculate degrees of freedom for pooled 
variance t-test
degrees_freedom = len(group_1) + 
len(group_2) - 2
# Calculate pooled standard deviation
pooled_std_dev = np.sqrt(((len(group_1) - 
1) * std_dev_1**2 + (len(group_2) - 1) * 
std_dev_2**2) / degrees_freedom)
# Calculate t-score for a 95% confidence 
interval
confidence_level = 0.95
t_score = stats.t.ppf((1 + confidence_
level) / 2, df=degrees_freedom)
# Calculate standard error of the 
difference between means
standard_error_diff = pooled_std_dev * 
np.sqrt(1/len(group_1) + 1/len(group_2))
# Calculate margin of error
margin_of_error = t_score * 
standard_error_diff

# Sample data for two groups
group_1 <- c(22, 25, 28, 30, 32)
group_2 <- c(38, 40, 42, 45, 48)
# Perform a two-sample t-test assuming 
equal variances (pooled variance)
t_test_result <- t.test(group_1, group_2, 
var.equal = TRUE, conf.level = 0.95)
# Extract the relevant values
mean_difference <- t_
test_result$estimate[1] 
- t_test_result$estimate[2]
pooled_std_dev <- sqrt(t_test_
result$stderr^2) # Standard error used to 
compute the pooled SD
degrees_freedom <- t_test_result$parameter
t_statistic <- t_test_result$statistic
conf_int <- t_test_result$conf.int
# Print the results
cat("Mean Difference:", mean_difference, 
"\n")
cat("Pooled Standard Deviation:", pooled_
std_dev, "\n")
cat("Degrees of Freedom:", degrees_freedom, 
"\n")
cat("t-Statistic:", t_statistic, "\n")

cat("95% Confidence Interval for the 
difference:", conf_int[1], "to", conf_
int[2], "\n")
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CI Type Python Implementation R Implementation

# Calculate confidence interval
mean_difference = mean_1 - mean_2
confidence_interval_lower = mean_difference 
- margin_of_error
confidence_interval_upper = mean_difference 
+ margin_of_error
print("Mean Difference:", mean_difference)
print("Pooled Standard Deviation:", 
pooled_std_dev)
print("Degrees of Freedom:", 
degrees_freedom)
print("t-Score:", t_score)
print("Standard Error of Difference:", 
standard_error_diff)
print("Margin of Error:", margin_of_error)
print("95% Confidence Interval:", 
(confidence_interval_lower, 
confidence_interval_upper))

Estimated Parameter:
Paired difference 
population mean dm

Sample Statistic:
Paired difference 
sample mean d

Confidence Interval 
Formula:

Paired difference

± ×/2
d

a
s

d t
n

import numpy as np
from scipy import stats
# Sample data for paired groups
before = np.array([22, 25, 28, 30, 32])
after = np.array([18, 20, 24, 25, 30])
# Calculate the differences between paired 
observations
differences = after - before
# Calculate sample mean and standard error 
of the mean difference
mean_diff = np.mean(differences)
std_error_diff = stats.sem(differences)

# Sample data for paired groups
before <- c(22, 25, 28, 30, 32)
after <- c(18, 20, 24, 25, 30)
# Calculate the differences between paired 
observations
differences <- after - before
# Calculate sample mean and standard error 
of the mean difference
mean_diff <- mean(differences)
std_error_diff <- sd(differences) / 
sqrt(length(differences))
# Calculate degrees of freedom
degrees_freedom <- length(differences) - 1
# Calculate t-score for a 95% confidence 
interval

TABLE 4.2  (CONTINUED)
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Assumptions:
The distribution of 
the differences is 
approximately equal

The number of pairs is 
≥ 30

# Calculate degrees of freedom
degrees_freedom = len(differences) - 1
# Calculate t-score for a 95% confidence 
interval
confidence_level = 0.95
t_score = stats.t.ppf((1 + confidence_
level) / 2, df=degrees_freedom)
# Calculate margin of error
margin_of_error = t_score * std_error_diff
# Calculate confidence interval
confidence_interval_lower = mean_diff 
- margin_of_error
confidence_interval_upper = mean_diff + 
margin_of_error
print("Mean Difference:", mean_diff)
print("Standard Error of Difference:", 
std_error_diff)
print("Degrees of Freedom:", 
degrees_freedom)
print("t-Score:", t_score)
print("Margin of Error:", margin_of_error)
print("95% Confidence Interval:", 
(confidence_interval_lower, 
confidence_interval_upper))

confidence_level <- 0.95
t_score <- qt((1 + confidence_level) / 2, 
df=degrees_freedom)
# Calculate margin of error
margin_of_error <- t_score * std_error_diff
# Calculate confidence interval
confidence_interval_lower <- mean_diff 
- margin_of_error
confidence_interval_upper <- mean_diff + 
margin_of_error
# Print results
cat("Mean Difference:", mean_diff, "\n")
cat("Standard Error of Difference:", std_
error_diff, "\n")
cat("Degrees of Freedom:", degrees_freedom, 
"\n")
cat("t-Score:", t_score, "\n")
cat("Margin of Error:", margin_of_error, 
"\n")
cat("95% Confidence Interval: (", 
confidence_interval_lower, ", ", 
confidence_interval_upper, ")\n", sep="")

Estimated Parameter:
Population mean p
Sample Statistic:
Sample mean p̂

import statsmodels.api as sm
import statsmodels.stats.proportion as 
proportion
# Sample data
total_samples = 200
successes = 130

# Sample data
total_samples <- 200
successes <- 130
# Calculate sample proportion
sample_proportion <- successes / 
total_samples
# Set confidence level
confidence_level <- 0.95



88�
Practical H

ealthcare Statistics w
ith Exam

ples in Python and R

CI Type Python Implementation R Implementation

Confidence Interval 
Formula:

( )−
± /2

ˆ 1 ˆ
ˆ a

p p
p z

n
Assumptions:
Have at least ten 
successes and 
non-successes: 

( )≥ − ≥0 010 1 10np and n p

# Calculate sample proportion
sample_proportion = successes / 
total_samples
# Set confidence level
confidence_level = 0.95
# Calculate confidence interval using 
statsmodels
conf_interval = proportion.proportion_
confint(successes, total_samples, alpha=1-
confidence_level, method='normal')
# Display results
lower_bound, upper_bound = conf_interval
print(f"Sample Proportion: 
{sample_proportion:.3f}")
print(f"Confidence Interval: ({lower_
bound:.3f}, {upper_bound:.3f})")

# Calculate standard error
std_error <- sqrt((sample_proportion *  
(1 - sample_proportion)) / total_samples)
# Calculate z-score for the given 
confidence level (95%)
z_score <- qnorm(1 - (1 - confidence_level) 
/ 2)
# Calculate margin of error
margin_of_error <- z_score * std_error
# Calculate confidence interval
confidence_interval_lower <- sample_
proportion - margin_of_error
confidence_interval_upper <- sample_
proportion + margin_of_error
# Display results
cat("Sample Proportion:", round(sample_
proportion, 3), "\n")
cat("95% Confidence Interval: (", 
round(confidence_interval_lower, 3), ", ", 
round(confidence_interval_upper, 3), ")\n", 
sep="")

Estimated Parameter:
Population mean 

−1 2p p
Sample Statistic:
Sample mean −1 2ˆ ˆp p

import numpy as np
import statsmodels.api as sm
# Sample data for two proportions
successes_group_1 = 80
trials_group_1 = 100
successes_group_2 = 90
trials_group_2 = 120
# Calculate the confidence interval using 
statsmodels' proportion_confint function

TABLE 4.2  (CONTINUED)
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(Continued)

Confidence Interval 
Formula:

− ± ×1 2 /2 .ˆ ˆ .p p z S Ea



( )

( )

−

=
−

+

1 1

1

2 2

2

ˆ ˆ1

. .
1ˆ ˆ

p p

nS E
p p

n

Assumptions:
Have at least ten 
successes and 
non-successes 
in each sample: 

( )
( )

−
− ≥

1 1 1 1 2 2

2 2

, 1 , ,

1 10

n p n p n p

n p

# This function automatically calculates 
the confidence interval for a given 
number of successes and trials
conf_interval_group_1 = sm.stats.
proportion_confint(successes_
group_1, trials_group_1, alpha=0.05, 
method='normal')
conf_interval_group_2 = sm.stats.
proportion_confint(successes_
group_2, trials_group_2, alpha=0.05, 
method='normal')
# Print results
print("Proportion Group 1:", 
round(successes_group_1 / trials_group_1, 
3))
print("Proportion Group 2:", 
round(successes_group_2 / trials_group_2, 
3))
print("95% Confidence Interval for Group 
1:", conf_interval_group_1)
print("95% Confidence Interval for Group 
2:", conf_interval_group_2)
# Calculate the difference in proportions 
and the confidence interval for the 
difference
diff_proportions = (successes_group_1 / 
trials_group_1) - (successes_group_2 / 
trials_group_2)

# Sample data for two proportions
successes_group_1 <- 80
trials_group_1 <- 100
successes_group_2 <- 90
trials_group_2 <- 120
# Combine successes and trials into vectors
successes <- c(successes_group_1, 
successes_group_2)
trials <- c(trials_group_1, trials_group_2)
# Perform a two-proportion z-test using 
prop.test()
test_result <- prop.test(successes, trials, 
conf.level = 0.95)
# Print the results
cat("Proportion Group 1:", round(successes_
group_1 / trials_group_1, 3), "\n")
cat("Proportion Group 2:", round(successes_
group_2 / trials_group_2, 3), "\n")
cat("Difference in Proportions:", 
round(test_result$estimate[1] - test_
result$estimate[2], 3), "\n")

cat("95% Confidence Interval for the 
Difference:", test_result$conf.int, "\n")
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standard_error_diff = np.sqrt(
 (successes_group_1 * (1 - (successes_
group_1 / trials_group_1)) / trials_
group_1) +
 (successes_group_2 * (1 - (successes_
group_2 / trials_group_2)) / 
trials_group_2)
)
z_score = sm.stats.proportion_confint(1, 
1, alpha=0.05, method='normal')[1]  
# Approximate z-score for 95% CI
margin_of_error = z_score * 
standard_error_diff
confidence_interval_lower = diff_
proportions - margin_of_error
confidence_interval_upper = diff_
proportions + margin_of_error
# Print confidence interval for the 
difference in proportions
print("Difference in Proportions:", 
round(diff_proportions, 3))
print("95% Confidence Interval for the 
Difference: (",
  round(confidence_interval_lower, 3), ", 
",
  round(confidence_interval_upper, 3), 
")")

TABLE 4.2  (CONTINUED)
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Additional Resources

Casella, G., & Berger, R. L. (2024). Statistical Inference (2nd ed.). Chapman & Hall/CRC 
Texts in Statistical Science.

Wasserman, L. (2010). All of Statistics: A Concise Course in Statistical Inference (Springer 
Texts in Statistics). Springer.
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5
Regression Modeling

Invariably, newcomers to the field will struggle with deciding on an appro-
priate statistical model for their research question or business problem. In 
fact, it is one of the most common questions I’m asked by students, interns, 
and newly hired employees. Often, there is the perception that “more 
advanced” machine learning methods are necessary for credible analysis. In 
the search for an appropriate model, it is common to see what I call the fum-
ble-around-and-find-out approach, where a host of statistical models is thrown 
at a problem without a clear rationale, including models such as random 
forests, XGBoost, convolutional neural networks, linear discriminant analy-
sis, and support vector machines. The analyst then determines which model 
produces the most optimal or best-fit result based on a defined performance 
metric (yes, I’m looking at you, computer science majors). Another approach 
frequently used by newcomers (and even more seasoned analysts) is the 
fast abandonment of simple approaches in favor of more advanced machine 
learning models the moment that model assumptions are violated. For exam-
ple, perhaps a multiple linear regression (we’ll talk about this shortly) is fit 
to the data, and the analyst identifies some interaction between variables or 
a non-linear relationship between the predictor and response. In these cases, 
analysts often feel that they’ve reached the end of the road with regression 
and that machine learning models should be employed as the necessary next 
step (potentially sacrificing interpretability along the way).

While I appreciate the technical finesse required to implement these more 
sophisticated approaches, I suggest to newcomers to healthcare statistics in a 
world where we must explain our models to our clinical stakeholders that a 
more thoughtful ground-up method be considered where interpretability is 
favored over extreme optimization. When approaching a research question, 
I’ll argue that the first question should be: What is the most straightforward 
and interpretable approach that appropriately addresses the research ques-
tion (Occam’s Razor)? As the analyst encounters difficulty with the simple 
model, incremental changes should be made to the model itself or the prepa-
ration of the variables. In this way, we prioritize interpretability and make 
surgical changes to the model to address specific data challenges.

http://dx.doi.org/10.1201/9781003609759-5
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This all might sound a bit nebulous, so let’s ground this discussion in real-
ity. This chapter will discuss regression, a modeling technique that allows us 
to generalize the relationship between a set of predictors and one or more 
response variables. Perhaps we’re trying to estimate a patient’s probability 
of a pressure ulcer (or bed sore)—a sore that results from prolonged pressure 
on a specific part of the body can develop in patients with extended hospital 
stays. The occurrence of a pressure ulcer would be the response (also called a 
dependent variable), and the patient characteristics would be the predictors 
(also called independent variables). Using language that is more specific to 
the healthcare problem, we could also say that the pressure ulcer is the out-
come, and the patient characteristics are the risk factors. I tend to use the latter 
language when working on patient-level models but will switch between 
this terminology depending on context.

Regression models allow us to make predictions (such as the probability 
of a bed sore), but an equally important aspect of the model is how we inter-
pret the association between the risk factors and the outcome. In some cases, 
we’re not even interested in the resulting prediction; we use the model to 
understand how the various risk factors relate to an outcome (spoiler alert: 
we use hypothesis testing to do this).

The remainder of this chapter will be a guided tour of these models, and 
staying true to the motivation behind this book, we will discuss the concep-
tual justification for each model, the statistical notation, and an implemented 
example in Python and R. We’ll spend more time discussing some models 
than others. I’ll reiterate that in this book, we will not delve deep into the the-
ory of each model, and the focus will be on the applied use of these models. 
That said, we do admittedly sacrifice depth for breadth to a certain degree. 
Additional resources have been provided at the end of this chapter for those 
interested in digging deeper into the theoretical minutia of a specific topic 
(and that, of course, is encouraged).

Figure 5.5 provides a beginner’s road map for selecting a model based on 
the characteristics of the predictors and the response being evaluated. My 
intent with this figure is to show the range of regression implementations 
that allow common data scenarios to be addressed while preserving model 
interpretability.

Enough chitchat. Let’s dig in.

Overview of Regression in Healthcare

Typically, we employ regression for two reasons. The first is to understand 
associations between predictor variables and a response variable. In this 
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scenario, we interpret the resulting model coefficients to determine if there is 
a statistically significant association between the predictors and the response 
(or the risk factors and the outcome in the case of an outcome model).

When implementing regression to understand such associations, we must 
be extra careful when constructing the model and its unique data assump-
tions. We’ll talk about model assumptions later in this chapter; however, as a 
representative example, one of the assumptions of regression modeling is that 
the predictor variables are independent. That is, two variables should not con-
tain overlapping information (or at least be minimized). This can be a pesky 
task within clinical data as many clinical conditions are related. Perhaps we are 
building a model to predict a patient’s length of stay. Among the many patient 
comorbidities in our model, we include the patient’s liver disease diagnosis 
and self-reported alcohol use. If we were to evaluate the relationship between 
alcohol consumption and liver disease, we would find that the two conditions 
are generally correlated and, therefore, contain duplicative information con-
tent. Regression models will blindly optimize to produce a model that best fits 
the data. If two variables are highly correlated, our conclusions about the asso-
ciations can be misleading. In such a scenario, the results of our hypothesis 
test (for the predictor variables) can result in a Type I error (we state that the 
association is not a result of chance) or a Type II error (we conclude that there is 
not an association when in fact there is). There are various ways to handle cor-
related data—with varying levels of sophistication. We’ll discuss these options 
in more detail later in this chapter. The point is that we are playing a high-
stakes game when using regression to identify clinical relationships. It cannot 
be overstated how important it is to carefully evaluate the data to ensure that 
the data conditions are appropriate for the employed model.

A second application of regression is to make a prediction or produce an 
expected value given the collective information we gather from the predic-
tor variables. Perhaps we’re building a model for a real-time decision sup-
port system, and we want to produce an alert to the care provider when a 
patient has a high risk of a fall (a common complication of inpatient care). 
In this case, we might emphasize the prediction’s accuracy and place the 
coefficients’ interpretability as a secondary focus. Of course, we do not want 
to understate the importance of interpreting the coefficients in a real-time 
model. When working with clinical stakeholders, they will want to know 
why an alert was fired for a given patient, and speaking from experience, 
stating that “the magic box produced this answer” will not be well received. 
We must balance the accuracy of the prediction while also being able to 
explain why the model produced a particular result.

Whether the motivation behind regression modeling is to make predic-
tions or to understand some association between predictors and responses, 
we will generally use the same core set of tools. Let’s open this toolbox and 
explore some of its contents.
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We can group the most salient forms of regression into two categories—
ordinary least squares (OLS) regression and generalized linear models 
(GLMs). Technically, OLS is a form of GLM, but let’s not make this more 
confusing than needed.

We’ll cover OLS models and GLMs in the paragraphs below, but for now, 
it’s important to know that OLS models are used for modeling continuous 
outcomes and can fit with a “closed form” solution. That is, a single equa-
tion using matrix algebra (yuck) can produce the fitted model. We must 
leverage more sophisticated methods to address more complex data sce-
narios—such as modeling outcomes with non-normal distributions. GLMs 
allow us to model more complex data scenarios but require an iterative form 
of optimization (often using a process called “maximum likelihood estima-
tion” [MLE]). Luckily, our friends in the open-source community have made 
available several statistical packages that abstract away this complexity, and 
from an implementation perspective, an OLS and GLM are nearly identical 
in Python and R.

I prefer problem-based learning rather than simply cataloging the vari-
ous forms of regression. Therefore, in the following sections, we’ll discuss 
OLS models and GLMs based on the type of problem they solve. For exam-
ple, we’ll discuss logistic regression under the header “Modeling Binary 
Outcomes”. This way, the reader will not have to sift through the various 
models to identify the one most suited to their research problem.

There are, of course, a number of data scenarios where basic forms of OLS 
and GLMs will be insufficient. The next chapter is the statistical equivalent of 
“break this glass in case of an emergency”. Here, we will introduce the next 
level of sophistication to handle more complex data scenarios. These models 
are typically reserved for graduate-level courses; however, given the preva-
lence of the data problems in healthcare data that these models address, it is 
important that we dedicate time to them. Here, we will introduce general-
ized additive models (my favorite secret weapon in statistics), zero-inflated 
models (for pesky scenarios where we have lots of zeros alongside a continu-
ous distribution), and a host of other model types and methods.

Ordinary Least Squares Regression

Linear regression models are designed to generalize a linear relationship 
between one or more predictor variables and a continuous response vari-
able. Simple linear regression refers to models that use one predictor variable, 
while multiple (or “multivariable”) linear regression refers to models using 
multiple predictor variables.
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Let’s start with the most basic examples using a simple linear regres-
sion. We have a response variable (systolic blood pressure) and a predic-
tor variable (patient age), and we want to estimate the response variable 
based on our predictor variable. The data for this simple model is shown 
in Figure 5.1. This mock data shows a linear relationship between age and 
BMI for adults 18–65. Suppose we position a line to the data points to 
minimize the collective distance between all the data points and the line. 
In that case, we (conceptually) fit a model whereby the linear relationship 
between age and BMI is quantified through the slope of the line and its 
intersection with the y-axis.

This optimization process is called OLS, which involves minimizing the 
sum of squared residuals (i.e., the sum of the squared distances between the 
data point and the line). You might recall the slope of a line as y = mx + b in 
your middle school math class. Statisticians like to jazz things up a bit, and 
so this formula is generally written as follows:

	 α β ε= + +1 1Y X

FIGURE 5.1
Ordinary Least Squares (OLS) fit optimized by minimizing the sum of squared residuals.
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where

Y 	is the dependent variable (BMI). It is the value that we are trying to 
estimate through the combination of predictor variables. In the case of 
simple linear regression, we have one predictor variable (age).

α 	represents the intercept, which we can define as the estimated response 
variable when all predictor variables are set to zero, providing a start-
ing point for the linear relationship between the predictor and the 
response. In the BMI example, it would be the expected BMI when  
age = 0.

β1	 is the coefficient (think about the slope of a line) that quantifies the rela-
tionships between age and systolic blood pressure. In this hypothetical 
example, each unit increase in the patient’s age is associated with an β1  
increase in BMI.

 ε	 represents the error term, which accounts for unexplained variation 
in BMI that is not captured by the linear relationship with age. Many 
other factors may help us explain changes in a person’s BMI, such as 
their diet, activity level, genetic characteristics, disability, and disease 
status. The error term ε represents the error in our estimation of Y 
due to unaccounted-for variables in our model that help explain Y. 
All models will have some degree of error. We aim to minimize that 
error by including a holistic set of variables that help us explain the 
outcome. In generalizing a model, there will always be some degree 
of error, as we cannot capture all the factors that might explain some 
outcome.

Disclaimer: This model is for demonstration only, and there are issues with 
modeling age and BMI as a linear relationship, as the relationship between 
age and BMI will be nonlinear across various stages of aging.

Regression equations can be expressed in a variety of ways. For example, 
we might write the same equation as β β= +0 1 1y X , where β0  is the intercept 
value, or in a way that is specific to our research question, B = + 1 AgeMI .α β  
It is always best to be as explicit as possible with notation so that there is less 
onus on the reader to decipher potentially cryptic notation. While flexing 
your statistical muscles with elaborate calligraphic notation is tempting, you 
are more likely to receive buy-in from clinical stakeholders if the approach 
can be easily interpreted.

Recall that one use of regression is interpreting the coefficients. Let’s exam-
ine the model statistics for our predictor variable, BMI, in the BMI example 
(Table 5.1).

What a mess this is! Take a deep breath. We’ll get through this together.
In the first column, we have const, which represents a constant (i.e., the 

intercept value). This variable is α  the point at which the line intersects 
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with the y-axis. It’s the starting point of our model before adjusting for the 
various predictors. The x1 value represents the predictor variable (age in our 
example), and its coeff value represents the slope of the line from Table 5.2. 
As we add additional variables to the model, they will be listed as X1, …, Xn.

Just when you thought we were done with hypothesis testing and confi-
dence intervals, they are back! The remaining columns in this table involve 
specific hypothesis tests for the intercept and coefficient values.

For the intercept value (const), our null hypothesis is that the intercept 
is zero, and the alternate hypothesis is that it is not zero. While this is use-
ful information, the most noteworthy information involves interpreting the 
coefficients for the individual predictors. In the case of our predictor variable 
(age), here labeled as x1, we are testing the null hypothesis that the slope of 
the line is zero and the alternate hypothesis that the slope of the coefficient is 
not zero. In other words, we are testing that the linear relationship between 
the predictor variable and the response variable is not likely to be by chance 
(when accounting for all other variables in the model).

In each of these testing scenarios (the intercept and the individual pre-
dictors), we are given the standard error (std. err), t-statistic (t), two-tailed 
p-value (p > |t|), and the 95% confidence values in which the true intercept 
or coefficient (i.e., slope) exists. The 0.025 and 0.975 columns, therefore, rep-
resent the lower 95% confidence interval. Recall that since this is a two-tailed 
test, the significance level is divided by two such that .025 (or 2.5%) of the 
data is represented at each tail.

In linear regression, interpreting the coefficients is easy. We can say that 
each unit increase in age (or x1) is associated with β1  an increase in BMI (or 

TABLE 5.1

Example Coefficient Results From a Simple Linear Regression Model

coef std. err t p > |t| [0.025 0.975]

const 26.935 2.386 11.29 0 22.138 31.732
x1 0.1498 0.055 2.747 0.008 0.04 0.259

TABLE 5.2

Example Coefficient Results from a Multivariable Linear Regression 
Model

coef std. error t p > |t| [0.025 0.975]

const 25.6964 1.016 25.302 0 23.681 27.712
Age 0.4687 0.02 23.903 0 0.43 0.508
Sex 1.2305 0.402 3.062 0.003 0.433 2.028
Activity −1.8132 0.212 −8.552 0 −2.234 −1.392
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y). Notice that we are being careful with our words here. We do not want to 
imply that there is a causal relationship, so it is generally good practice to use 
words like “associate” rather than “causes” or “results in”.

There is a specific and quickly growing field of statistics called “causal 
inference”, where statistical models are designed to identify causality. This 
field of statistics is fascinating, and many of the techniques discussed in this 
book are foundational concepts that will be useful for someone interested in 
causal analysis. However, we will not discuss causal inference in depth.

Now that we have a fitted model, we can apply it to new observations 
(i.e., patients outside the sample we used to fit our model). For example, 
I am 45 years old (stop laughing), and using this crude model fitted using 
mock data, we can use the intercept value and age coefficient to estimate or 
predict my BMI.

	 ( )= +33.676 26.935 45 0.1498x

Even if we used actual observed patient data for this model, it would 
undoubtedly produce abysmal results. That is, of course, because we are 
using minimal information about the patient. If only there were a way to use 
more information about the patient to estimate their BMI. Well, you guessed 
it—there is! Using multiple linear regression, we can account for multiple 
patient characteristics and reduce the error in our prediction.

Multiple Linear Regression

In multiple linear regression, we use more than one variable to estimate the 
outcome. We could update our model to include body mass index (BMI). 
That model can be written as follows:

	 1 1 2 2 3 3BMI Age Sex Activity Levelα β β β ε= + + + +

Or, more generally, this can be written as follows:

	 1 1Y n nX Xα β β ε= + +…+ +

The interpretation of a simple linear regression is, well … simple. The rela-
tionship between the response and a predictor variable is a straight line. If 
we include an additional variable, the model can be conceptualized as a 
plane in three-dimensional coordinate space. With the third variable and 
any additional predictor beyond two, we end up with a hyperplane across 
n-dimensions. Practically speaking, however, it is important to know that the 
relationship between each predictor variable and the response (symbolized 
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as βi ) quantifies the association between a single predictor and an outcome 
when all other variables are held constant.

Using the BMI example above, let’s look at a multiple linear regression in 
Python.

import numpy as np
import pandas as pd
import statsmodels.api as sm
np.random.seed(0)
n = 100  # Number of samples
age = np.random.normal(40, 10, n)
sex = np.random.choice([0, 1], n)  # 0 for female, 1 for 
male
activity_levels = np.random.normal(3, 1, n)
bmi = 25 + 0.5 * age + 1.5 * sex - 2 * activity_levels + 
np.random.normal(0, 2, n)
pat_data_df = pd.DataFrame({'Age': age, 'Sex': sex, 
'Activity': activity_levels, 'BMI': bmi})
X = pat_data_df[['Age', 'Sex', 'Activity']]
X = sm.add_constant(X) 
y = pat_data_df['BMI']
model = sm.OLS(y, X).fit()
print(model.summary())

In this example, we use the statsmodels package to fit an OLS model 
sm.OLS(y, X).fit(). The constant term sm.add_constant(X)is nec-
essary to ensure that an intercept value is included in the model.

If we peek at the coefficient summary from our model, we can see that 
increased activity is negatively associated with BMI—as activity increases, 
BMI decreases. We can also see that BMI increases with age and that males 
are slightly more likely to have a higher BMI. Each variable is significant at 
the 95% confidence level since it is below .05.

Using R, the implementation might look like this:

library(broom)
n <- 100  # Number of samples
age <- rnorm(n, mean = 40, sd = 10)
sex <- sample(c(0, 1), n, replace = TRUE)  # 0 for 
female, 1 for male
activity_levels <- rnorm(n, mean = 3, sd = 1)
bmi <- 25 + 0.5 * age + 1.5 * sex - 2 * activity_levels + 
rnorm(n, mean = 0, sd = 2)
pat_data_df <- data.frame(Age = age, Sex = sex, Activity 
= activity_levels, BMI = bmi)
pat_bmi_model <- lm(BMI ~ Age + Sex + Activity, data = 
pat_data_df)
summary(pat_bmi_model)
tidy(pat_bmi_model)
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Here, we use the lm function to run a linear model (an OLS model). The 
tidy function from the broom package is used to format the coefficients into 
a two-by-two data frame similar to the table shown in Table 5.2. I highly 
recommend the broom package for extracting model coefficients (a well as 
performance statistics and other model metadata).

Generalized Linear Models

And now for my favorite subject—GLMs. GLMs, the Swiss army knife of 
interpretable modeling, are based on a flexible model framework that allows 
us to swap out its component parts to solve a wide range of data problems. 
Like OLS models, GLMs allow us to model the relationship between a 
response variable and one or more predictor variables; however, GLMs can 
additionally be used to model outcomes with strong rightward skew (long 
tails to the right), as we commonly see with cost and length of stay data, 
binary outcomes such as mortality and readmissions, or nominal outcomes 
(where a variety of outcomes are possible), such as complications (of course 
they can be binary too). We can certainly model normal distributions with 
a GLM as well. In fact, an OLS model and a GLM will produce the same 
results, as an OLS model is technically a type of GLM. Any distribution that 
falls within the exponential family of distributions can be modeled—providing 
that we use the proper components.

When a new data problem is put in front of me (where response and pre-
dictors are involved), my first thought is, “Can I use a GLM for this?” Case 
in point: Of the 20 published papers I’ve authored or coauthored in the last 
three years, 17 have used some form of GLMs to address a wide range of 
healthcare-related issues.

There are three primary components in a GLM: (1) the linear predictor, 
(2) the probability distribution, and (3) the link function.

First is the probability distribution itself. Here, we are specifically talking 
about the distribution of the response variable. If we were to plot the response 
variable distribution as a histogram, we should be able to naturally intuit the 
distribution of the data (or at least narrow the candidate list). By picking the 
distribution, we are defining the distributional characteristics of the outcome to 
ensure that predictors are optimized in the context of that distribution and that 
the resulting predictions are constrained to the shape of the designated distri-
bution. Common distributions include the Gaussian (normal) distribution for 
continuous data, the binomial distribution for binary data, and the Poisson dis-
tribution for count data. Other important distributions are the negative bino-
mial, gamma, and exponential distributions. We’ll focus on examples common 
to specific health outcomes; however, it is important to understand that the 
framework can be adapted to problems outside the specific examples here.
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Next is the linear predictor, which, as we saw in the OLS example, is a func-
tion of the linear combination of the predictor variables. That is, the intercept 
value and predictor variables are weighted by their respective coefficients 
(i.e., α β+ +1 1x β β+…+2 2 n nx x ). The linear predictor is typically represented 
by the Greek character η  (eta) as shown in the below notation:

	 1 1 2 2 n nx x xη α β β β= + + + +

The linear combination of predictors η  is an unbounded function. The result 
can be positive or negative, depending on the values of the predictors, and 
there are no constraints in the resulting value. If we want to model a binary 
outcome, for example, nothing prevents the result from producing a value 
outside the range of 0 to 1. We certainly don’t want our model to produce a 
negative value or a value greater than 1.

How, then, do we relate the unique nature of the outcome distribution to 
the linear combination of predictors? Well, the link function, that is! (Come on. 
I’m trying to sound excited about this). The link function allows us to model 
the outcome linearly despite the unique shape of the target distribution. In the 
case of a binary outcome, the link function allows us to relate a binary outcome 
to a linear predictor. As we can see in the formula below, the link function 
allows us to model the probability of an event using a logit link function.

	
η α β β = = + +…+ − 

1 1
1

n n
P

ln X X
P

Here, we see that the linear combination of variables η  represents the log 

odds  
 − 1

P
ln

P
 of the probability. We cannot use the linear combination of 

variables to produce a probability, but we can model the log-odds (using a 
“natural log”).

The resulting value η  can subsequently be transformed into a probability 
p , properly bounded between 0 and 1 using the appropriate inverse link 
function (in this case, the sigmoid function). We represent the inverse link 
function more generally as g .

	
( ) ηη −= =

+
1

1
p g

e

Table 5.3 provides a quick guide to the link function and inverse link func-
tion most frequently used for Gaussian, Poisson, and Binomial distributions, 
which are common within healthcare.

Wowzers Mike. I’m still confused.

Okay, let me summarize. A GLM consists of three fundamental components: 
the probability distribution, the linear predictor, and the link function. The 
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choice of a probability distribution is necessary to match the data’s charac-
teristics, with common options like Gaussian for continuous data, Poisson 
for rightward skewed distributions (especially when count data is being 
modeled), and binomial for binary outcomes (see Table 5.3). The linear pre-
dictor combines the predictor variables, but it can produce unbounded val-
ues, necessitating the link function. The link function acts like a translator 
by turning the unlimited values from the linear combination of predictors 
into predictions that make sense for our data, such as keeping probabilities 
between 0 and 1 or making sure counts aren’t negative. Once the data is 
modeled linearly (with the help of the link function), the data can be con-
verted back to its original scale with the inverse link function. In the case 
of a binary outcome, we used the logit link function to model a binary out-
come as log odds and the sigmoid inverse link function to convert those log 
odds back into probabilities. By understanding and combining these com-
ponents, GLMs provide a versatile framework for modeling a wide range 
of data types.

TABLE 5.3

Canonical and Inverse Link Functions by Response Distribution for Linear, Logistic, 
and Poisson GLMs

Type of 
Regression When to Use

Probability 
Distribution

Canonical Link 
Function

Inverse Link 
Function

Linear 
Regression

When modeling 
continuous 
outcomes with a 
linear relationship 
between predictors 
and the response.

Gaussian 
(Normal)

Identity Link 
η µ=

( )η η=g

Logistic 
Regression

When modeling 
binary or 
categorical 
outcomes 
(mortality, 
complications, 
readmissions)

Binomial Logit Link 

µη
µ

 
=  − 

log
1

( )η η= −+
1

1
g

e

Poisson 
Regression

When modeling 
count data or 
event rates where 
the response 
variable follows 
a Poisson 
distribution (cost, 
charge, LOS)

Poisson Log Link 

( )η µ= log

( ) ηη =g e



104� Practical Healthcare Statistics with Examples in Python and R

We’ve done some hand-waiving here regarding the optimization of 
GLMs which are fit through an iterative process whereby the parameter 
estimates ( β ) are adjusted incrementally to produce the optimal model 
fit. This is commonly done through a process called MLE, although other 
optimization methods can be used. We won’t dig too deep into MLE and 
the concept of likelihood. It is important to know that the link function 
is critical in this optimization process because it transforms the model 
structure into a linear form, allowing for efficient estimation of the model 
coefficients.

In the following chapters, we’ll provide some applied examples of GLMs. 
In keeping with this book’s goal, the statistical notation will be provided 
alongside the Python and R code for each data scenario. Note that a more 
generic statistical notation has been provided in the following paragraphs 
for consistency across distributions (and to demonstrate GLMs as a unified 
framework); however, alternative notation for each of the three primary 
models discussed below has also been provided in Table 5.4. The notation 
in this table is more common when writing about specific models (e.g., a 
logistic regression) and would be my recommended notation if writing 
about the model in a white paper or publication. Table 5.4 also provides 
a snippet of Python and R code to show the notation and implementation 
side by side.

Selecting an Appropriate Model

In most scenarios, our research question involves understanding how a set 
of predictor variables is associated with a continuous or categorical response 
variable. Continuous response variables can be normal or skewed in some 
way. Categorical variables can have a single category, such as the binary 
occurrence of mortality, or multiple categories (e.g., complications occurring 
in the hospital).

Modeling Continuous Data

Continuous data can come in many shapes (or distributions), which, as we 
have discussed previously, will determine the most appropriate model to fit 
our predictors. In this section, we’ll cover two primary data scenarios: nor-
mally distributed data and rightward skewed data.
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TABLE 5.4

Regression Notation and Examples

Regression 
Model

Regression 
Model Details Example Description

Linear 
Regression

Response 
Distribution

( )µ σ 2~ ,Y N Models continuously have outcomes with a normal 
distribution. ( )2,µ σN  indicates that the response is 
normally distributed with a mean µ  and a constant 
variance σ 2

Functional Form µ α β β − −= + +…+1 1 1 1p px x A linear relationship between predictors and the 
response gives the estimated mean response µ .

Python 
Implementation

from sklearn.linear_ 
model import Linear 
Regressionmodel = 
LinearRegression(). 
fit(X, y)

Use LinearRegression from scikit-learn for fitting the 
model.

R Implementation linear_mod <- glm(y ~ ., data = 
df)

Use glm() function with the default family as Gaussian 
to fit a linear model.

Logistic 
Regression

Response 
Distribution

( )~ BerY P Models binary or categorical outcomes with a 
Bernoulli distribution. P represents the probability of 
the response being 1 (success).

Functional Form α β β − −
  = + +…+ = 

1 1 1 1log
1

p p
P

x x
P

The logit link function models the log-odds of the 
probability as a linear combination of predictors.

Python 
Implementation

from sklearn.linear_model import 
LogisticRegressionmodel = 
LogisticRegression().fit(X, y)

Use LogisticRegression from scikit-learn to fit the 
logistic model.

R Implementation logistic_mod <- glm(y ~ ., 
family = binomial(), data = df)

Use glm() with the binomial() family to fit a 
logistic regression model.

(Continued)
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Regression 
Model

Regression 
Model Details Example Description

Poisson 
Regression

Response 
Distribution

( )µ~ PoissonY Models count data or event rates with a Poisson 
distribution, where µ  is the mean count.

Functional Form ( )µ α β β − −= + +…+1 1 1 1log p px x The log link function models the log of the mean 
response µ  as a linear combination of the predictors.

Python 
Implementation

from sklearn.linear_model import 
PoissonRegression
model = PoissonRegression().
fit(X, y)

Use PoissonRegression from sklearn (or 
statsmodels for more flexibility) to fit the Poisson 
model.

R 
Implementation

poisson_mod <- glm(y ~ ., 
family = poisson(), data = df)

Use glm() with the poisson() family to fit a Poisson 
regression model.

TABLE 5.4  (CONTINUED)
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Modeling Normal Distributions

In the above section on OLS, an example model was provided with BMI as 
the dependent variable and age, sex, and activity level as predictor variables. 
Providing the same dataset, the OLS and GLM will produce the same results, 
and we will represent the model using the same notation.

	 α β β β ε= + + + +1 1 2 2 3 3BMI Age Sex Activity Level

Or more generally

	 1 1Y n nX Xα β β ε= + + + +

Given that the distribution is normal and can be modeled directly through 
the linear combination of predictors, no transformation is needed for the link 
function (and, therefore, the inverse link function). Technically, we use the 
identity link function, but no transformation is required. The identity link 
function directly models the expected value of the response variable based 
on the linear combination of predictor variables without changing or trans-
forming it.

An implementation of the same research question demonstrated using 
OLS above is shown below using a GLM model with normal or “Gaussian” 
distribution:

import numpy as np
import pandas as pd
import statsmodels.api as sm
np.random.seed(0)
n = 100  # Number of samples
age = np.random.normal(40, 10, n)
sex = np.random.choice([0, 1], n)  # 0 for female, 1 for 
male
activity_levels = np.random.normal(3, 1, n)
bmi = 25 + 0.5 * age + 1.5 * sex - 2 * activity_levels + 
np.random.normal(0, 2, n)
data = pd.DataFrame({'Age': age, 'Sex': sex, 'Activity': 
activity_levels, 'BMI': bmi})
X = data[['Age', 'Sex', 'Activity']]
X = sm.add_constant(X)  
y = data['BMI']
glm_model = sm.GLM(y, X, family=sm.families.Gaussian()).
fit()
print(glm_model.summary())

Notice that, in this example, the model is fit using sm.GLM(y, X, 
family=sm.families.Gaussian()).fit() rather than the OLS func-
tion sm.OLS(y, X).fit(). This shows that we are using the larger GLM 
framework, specifying a normal or “Gaussian” distribution. The GLM class in 
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statsmodels will select the “canonical” link function for us that is appro-
priate for the selected distribution (Table 5.3)

In this model, the coefficients indicate the change in the original response 
variable for a one-unit increase in the corresponding predictor variable. A 
positive coefficient suggests that a unit increase in the predictor variable 
is associated with an increase in the response variable by a quantity of β , 
assuming a constant proportional effect. For example, if the coefficient is 0.1, 
it implies a .01 increase in the response variable for every one-unit increase 
in the predictor variable.

Likwise in R, we can implement a GLM with a Gaussian distribution in a 
similar manner, passing in the gaussian() function call as an argument to 
the glm function:

set.seed(0)
n <- 100  # Number of samples
age <- rnorm(n, mean = 40, sd = 10)
sex <- sample(c(0, 1), n, replace = TRUE)  # 0 for 
female, 1 for male
activity_levels <- rnorm(n, mean = 3, sd = 1)
bmi <- 25 + 0.5 * age + 1.5 * sex - 2 * activity_levels + 
rnorm(n, mean = 0, sd = 2)
data <- data.frame(Age = age, Sex = sex, Activity = 
activity_levels, BMI = bmi)
glm_model <- glm(BMI ~ Age + Sex + Activity, data = data, 
family = gaussian())
summary(glm_model)

Modeling Skewed Distributions: Using Log Transformation

Rightward-skewed data is common in healthcare, especially with count-
based outcomes such as LOS, cost, and charge. Several regression modeling 
options are available when working with data where the response variable is 
rightward skewed (i.e., has a longer tail to the right).

The first is to use a true linear model that assumes a normal distribu-
tion. This can be an OLS model or GLM (remember, they produce the 
same results). The trick here is that we first apply a log transformation 
to the response variable so that the distribution is coerced (hopefully) 
into a normal distribution. A visual inspection of the distribution before 
and after transformation will often be sufficient to determine if the data 
distribution is log-normal (i.e., normal when the log is transformed). 
There are more formal tests of normality (e.g., Shapiro-Wilk, Anderson-
Darling, and Kolmogorov-Smirnov tests) if additional rigor is needed in 
your analysis.

Log transformations gracefully compress data so that more extreme values 
near the tail are pulled toward the center—making log modeling an appro-
priate choice for skewed data. Another benefit to the log transformation is 
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that outliers generally become less influential since the scale of the data is 
compressed through the log transformation. We might express a model fit to 
patient length of stay as follows:

	 ( ) 1 1Y n nlog X Xα β β ε= + +…+ +

Since we are force-fitting the response variable into a normal distribution, no 
link function is required.

Let’s suppose we are estimating the cost of an inpatient stay, data typi-
cally distributed with rightward skew. To employ a log model, we would 
transform the total cost for each patient stay with a log transformation 
(i.e., log(cost)) and use the log cost as the response variable in our linear 
model.

Python
import pandas as pd
import statsmodels.api as sm
import numpy as np
data = {
    'cost': [1000, 1200, 800, 1500, 2000, 900, 1100, 
1700, 950, 1300],
    'age': [45, 32, 67, 54, 21, 38, 49, 60, 27, 40],
    'sex': [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],  # 1 for male, 
0 for female
    'covid_indicator': [1, 0, 0, 1, 1, 0, 0, 1, 1, 0],  # 
1 for COVID, 0 for no COVID
}
df = pd.DataFrame(data)
df['log_cost'] = np.log(df['cost'])
X = df[['age', 'sex', 'covid_indicator']]
X = sm.add_constant(X)  # Add a constant (intercept) term 
to the model
y = df['log_cost']
lognormal_model = sm.GLM(y, X, family=sm.families.
Gaussian()).fit()
print(lognormal_model.summary())

R

data <- data.frame(
  cost = c(1000, 1200, 800, 1500, 2000, 900, 1100, 1700, 
950, 1300),
  age = c(45, 32, 67, 54, 21, 38, 49, 60, 27, 40),
  sex = c(1, 0, 1, 0, 1, 0, 1, 0, 1, 0),  # 1 for male, 0 
for female
  covid_indicator = c(1, 0, 0, 1, 1, 0, 0, 1, 1, 0)  # 1 
for COVID, 0 for no COVID
)
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data$log_cost <- log(data$cost)
lognormal_model <- glm(log_cost ~ age + sex + covid_
indicator, data = data, family = gaussian())
summary(lognormal_model)

As shown in the example above, our response variable (cost) is transformed 
using the numpy log function np.log() or simply log() in R. The model is 
then fit to the predictor variables.

It is important to note that we have specified a normal or “Gaussian” dis-
tribution as the GLM distribution and simply applied a pre-processing step 
to transform the response variable to a normal distribution.

Additionally, our predicted values from this model will also be on a log 
scale, and we must exponentiate (i.e., apply the antilog) to convert the pre-
diction back to the original cost scale.

Note that due to the log transformation of the response variable, the scale 
of the model coefficients is also on a log scale. For example, a unit step 
increase in age (i.e., a year) is associated with a β  increase in the log cost. 
For improved interpretability, we can exponentiate the coefficient such that 
exp( β )  represents the increase in the response variable (i.e., cost) with each 
unit increase in X (i.e., age) when all other variables are held constant.

Note that the log of zero results in infinity; therefore, a log transformation 
applied to zero values can result in errors in the code. One way to handle this 
is to add 1 to all values before the log transformation. Just as we add 1 before 
the log transformation, we must also subtract 1 from the exponentiated val-
ues when converting the prediction back to its original scale.

Modeling Skewed Distributions: Using Poisson 
Regression (and other distributions)

Arguably, a more elegant solution for modeling outcomes with rightward 
skew is to use a GLM with an appropriate distribution. For example, cost, 
charge, and length of stay outcomes are based on the count of days or dol-
lars and will naturally have a rightward skew. These variables start at zero 
(or 1) and are distributed such that the bulk of the data is near the left-hand 
side of the distribution, with a long tail of more extreme values. Within a 
particular disease group, most patients will have a length of stay in a similar 
range; however, there will be exceptional patients with a longer LOS due to 
the complexity of their diagnoses or operational challenges (no place to dis-
charge the patient). The same will be true with the cost of an inpatient stay or 
episode, where some smaller proportion of the patient population will have 
more extreme costs due to specialized treatment.

While we could log transform the response variables to coerce the data into 
a more normal distribution, a GLM model allows us to model the distribution 
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outright by specifying a distribution that naturally aligns with the distribu-
tion of the outcome. A Poisson model is generally a good starting point for 
cost data, as a count of dollars (although Gamma or Negative binomial dis-
tributions should also be considered). The Poisson distribution uses the log 
link function as shown as follows:

	 ( )η λ α β β= = + +…+1 1 n nlog X X

where λ  represents the expected rate of occurrence of the dependent variable.
Given that the log link function is used for the Poisson distribution (Table 

5.3), the model’s resulting values can be converted back to their original scale 
through exponentiation (the antilog), the inverse link function.

	 ( )η = ng e

While the log-transformed linear model and Poisson model appear similar 
structurally—in that, the linear combination of the predictor variables is 
exponentiated to obtain a prediction on the scale of the original distribu-
tion—the models are fit in quite different ways. Unlike the log-transformed 
model, no log transformation is applied to the response variable itself in 
Poisson regression. The Poisson distribution inherently models count data. 
As such, no special handling in the Poisson model is needed to account for 
potential zero values in the distribution.

Python
import pandas as pd
import statsmodels.api as sm
import numpy as np
data = {
    'cost': [1000, 1200, 800, 1500, 2000, 900, 1100, 
1700, 950, 1300],
    'age': [45, 32, 67, 54, 21, 38, 49, 60, 27, 40],
    'sex': [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],  # 1 for male, 
0 for female
    'covid_indicator': [1, 0, 0, 1, 1, 0, 0, 1, 1, 0],  # 
1 for COVID, 0 for no COVID
}
df = pd.DataFrame(data)
X = df[['age', 'sex', 'covid_indicator']]
X = sm.add_constant(X)  # Add a constant (intercept) term 
to the model
y = df['cost']
poisson_model = sm.GLM(y, X, family=sm.families.
Poisson()).fit()
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predicted_cost = poisson_model.predict(X)
print(poisson_model.summary())

R

data <- data.frame(
  cost = c(1000, 1200, 800, 1500, 2000, 900, 1100, 1700, 
950, 1300),
  age = c(45, 32, 67, 54, 21, 38, 49, 60, 27, 40),
  sex = c(1, 0, 1, 0, 1, 0, 1, 0, 1, 0),  # 1 for male, 0 
for female
  covid_indicator = c(1, 0, 0, 1, 1, 0, 0, 1, 1, 0)  # 1 
for COVID, 0 for no COVID
)
poisson_model <- glm(cost ~ age + sex + covid_indicator, 
data = data, family = poisson())
predicted_cost <- predict(poisson_model, type = 
"response")
summary(poisson_model)

Here, we can see that the Poisson distribution is specified in the GLM 
rather than a Gaussian distribution in the previous example. In Python, we 
use family = sm.families.Poisson(), while, in R, we similarly use 
family = poisson(). The outcome is modeled for us directly using the 
appropriate link function (which, again, these functions are doing for us with 
their canonical defaults). These functions do provide an option to override 
the link function if desired.

In Poisson regression, the coefficients represent the effect on the expected 
count of occurrences for a one-unit change in the predictor variable, while 
holding other predictors constant. For example, if β1  is 0.1, this implies that 
for every one-unit increase in 1x , the expected count increases by a factor of 
exp(0.1), which is approximately 1.105. In other words, the expected count is 
approximately 10.5% higher for each one-unit increase in X1.

There are scenarios where other data distributions may be more appropri-
ate. For example, the negative binomial and gamma distributions may also 
be considered and can provide a better fit depending on the unique charac-
teristics of the data.

Modeling Binary Outcomes

Suppose we want to model a binary outcome, like inpatient mortality, 
based on a set of patient characteristics. If we use the OLS approach, our 
model is likely to produce values outside the boundaries of our observed 
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distributions—that is, the values could be less than zero (negative) or greater 
than one. A more appropriate model would be logistic regression, a member 
of the GLM family of models.

We cannot derive a binary outcome from a linear combination of predic-
tors, as no constraint exists to prevent the resulting value from being outside 
the range of probabilities (0 to 1). Therefore, the linear combination of predic-
tors is fit to the log-odds of the probabilities (i.e., the logit link function). This 
allows the linear combination of predictors to produce a real number that is 
not bounded between 0 and 1.

	
η α β β = = + +…+ − 

1 1
1

n n
P

ln X X
P

The sigmoid inverse link function can be applied to the linear combination 
of predictors to reshape the result into probability p , naturally bounded 
between 0 and 1.

	
( )η −=

+
1

1 ng
e

Let’s consider a scenario where we are interested in the association between 
a set of patient characteristics (age, biological sex, COVID-19, and diabetes) 
and mortality using a sample of acute inpatient stays:

Python

import statsmodels.api as sm
import pandas as pd
data = {
    'age': [45, 32, 67, 54, 21, 38, 49, 60, 27, 40],
    'sex': [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],  # 1 for male, 
0 for female
    'covid_indicator': [1, 0, 0, 1, 1, 0, 0, 1, 1, 0],  # 
1 for COVID, 0 for no COVID
    'diabetes_indicator': [0, 1, 0, 1, 0, 0, 1, 0, 1, 0],  
# 1 for diabetes, 0 for no diabetes
    'mortality': [1, 0, 1, 1, 0, 1, 0, 1, 1, 0]  # 1 for 
yes, 0 for no
}
df = pd.DataFrame(data)
X = sm.add_constant(df[['age', 'sex', 'covid_indicator', 
'diabetes_indicator']])
logistic_model = sm.GLM(df['mortality'], X, family=sm.
families.Binomial()).fit()
print(logistic_model.summary())
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R

data <- data.frame(
  age = c(45, 32, 67, 54, 21, 38, 49, 60, 27, 40),
  sex = c(1, 0, 1, 0, 1, 0, 1, 0, 1, 0),  # 1 for male, 0 
for female
  covid_indicator = c(1, 0, 0, 1, 1, 0, 0, 1, 1, 0),  # 1 
for COVID, 0 for no COVID
  diabetes_indicator = c(0, 1, 0, 1, 0, 0, 1, 0, 1, 0),  
# 1 for diabetes, 0 for no diabetes
  mortality = c(1, 0, 1, 1, 0, 1, 0, 1, 1, 0)  # 1 for 
yes, 0 for no
)
logistic_model <- glm(mortality ~ age + sex + covid_
indicator + diabetes_indicator, data = data, family = 
binomial())
summary(logistic_model)

Notice that we are again staying within the GLM framework but are using 
the binomial family to fit our model in both implementations.

In logistic regression, the coefficients are interpreted as the change in the 
log odds of the event occurring for a one-unit change in the predictor vari-
able. A positive coefficient implies an increase in the likelihood of the event 
occurring, while a negative coefficient indicates a decrease. The regression 
coefficients are often converted to odds ratio for greater interpretability 
when modeling binary outcomes. Since the coefficients are modeled as log 
odds, we can exponentiate the log odds to obtain the odds ratio directly. For 
example, if the coefficient is 0.5, it suggests that the odds of the event hap-
pening increase by a factor of exp(0.5) (approximately 1.65) for each one-unit 
increase in the predictor variable.

Regression Assumptions

Now, we can’t just go around running regression models willy-nilly. We must 
ensure that the data conditions are appropriate for the selected model. That is, 
we must check our assumptions. A common mnemonic for modeling a nor-
mal distribution is L.I.N.E., an acronym for (1) Linearity, (2) Independence of 
Errors, (3) Normality, and (4) Equal Variance.

Let’s break these down a bit.
As discussed above, a fundamental assumption in linear regression is 

that the predictor variables have a linear relationship with the response. 
As the predictor value increases, we expect a proportional increase in the 
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response variable by a factor of β . We can transform the predictor vari-
ables (e.g., using logs) on occasion so that the transformed predictor has a 
linear relationship with the response despite a non-linear relationship with 
the unadjusted predictor. The point here is that the relationship must be 
linear in the coefficients (despite these sneaky tricks to model non-linearity 
through transformations).

The independence of errors assumption states that a regression model’s 
errors, also known as residuals, are independent. In other words, the error 
for one data point should not be related to the error for any other data point 
in the dataset. In healthcare, a typical scenario where this assumption can be 
violated is when evaluating patient outcomes whereby the same patient has 
multiple encounters with a care provider. Since the outcomes for the same 
patient are likely to be similar across encounters (e.g., high blood pressure), 
we can no longer state that the errors are independent in that the errors for 
a given patient across encounters are likely to be correlated. Ignoring the 
violation of the independence assumption in this context can lead to biased 
coefficients and incorrect statistical inferences.

To state the obvious, our third assumption is that when working with 
an OLS or GLM with a Gaussian distribution, the response variable being 
modeled must be normal. If the response distribution is not normal, our 
interpretation of the predictor variables may be misleading (or erroneous 
altogether), and the resulting predictions from our model can be misaligned. 
Of course, we’ve shown that many distributions do not conform to a normal 
distribution and can be modeled with GLMs using alternate distributions 
(“Poisson”, “Negative Binomial”, “Gamma”, etc.). We can, therefore, restate 
this assumption as a “Distributional” assumption, meaning that the response 
distribution in the observed data must align with the distribution selected in 
the fitted model (e.g., GLM). LIDE doesn’t have the same ring to it, so we’ll 
stick with LINE for now.

Lastly is the assumption of equal variance, which states that the variance 
of the response variable should be constant across all levels of the predic-
tor variables. In other words, the spread of the residuals should be roughly 
the same across the range of predictors. If we were to plot the residuals (i.e., 
the prediction minus our observed value) from a simple linear regression 
against the range of predictor variables, we should see equal variance across 
all values of the predictor. That is, we do not have a greater degree of error 
along some subset of the predictor values. Equal variance in fancy stats lingo, 
is referred to as homoscedasticity. If this assumption is violated, we see a 
fluting pattern of residuals called heteroscedasticity. Heteroscedasticity is 
generally characterized by an increasing degree of error as the value of the 
predictor increases.

Table 5.5 shows the applicability of various model assumptions to different 
types of regression models:
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While the LINE assumptions are the pillars of linear regression, some other 
assumptions about regression modeling are important to mention.

Like in linear regression, GLMs assume that there is no perfect multicol-
linearity among predictor variables. Perfect multicollinearity occurs when 
one predictor variable can be precisely predicted from the others. Adequate 
sample size is also essential, especially when dealing with rare events or fit-
ting models with many predictors. Small sample sizes can lead to unstable 
coefficients and unreliable model results. We’ve used small samples for 
demonstration purposes in this book; however, in the real world, we would 
expect considerably more samples for valid analysis. Outliers or influential 
data points can affect the model’s parameter estimates and goodness-of-fit 
measures. Identifying and influential data points is important in GLM analy-
sis. We’ll touch on this topic later, but suffice it to say that extreme data points 
can bias the model fit and result in suboptimal predictions. Lastly is the poten-
tial for overdispersion, which occurs when the response variable’s variance 
is greater than expected from the chosen distribution. Underdispersion can 
also occur, which has the opposite characteristics. In the case of overdisper-
sion, the negative binomial distribution can be employed in the GLM, which 
does not assume constant variance across the response distribution.

Measuring Model Fit

There’s an old South Asian parable about a group of blind men encountering 
an elephant for the first time. Each person approaches the animal by touching 

TABLE 5.5

Assumptions by Regression Model Type

Assumption
Linear 
Regression

Logistic 
Regression

Multinomial 
Regression

Poisson 
Regression

Negative 
Binomial 
Regression

Ordinal 
Regression

Linearity of 
Relationships

✓

Independence 
of Errors

✓ ✓ ✓ ✓ ✓ ✓

Normality of 
Errors

✓

Equal Variance ✓ ✓ ✓ ✓
Categorical 
Dependent 
Variable

✓ ✓ ✓
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it to understand what an elephant is. One person touches the flat elephant’s 
ears, another touches its trunk-like legs, yet another touches its wall-like 
torso, and finally, another touches its narrow tail. Of course, the moral of the 
story is that each person has a different perspective of reality based on their 
unique experiences. Well, a fitted model is a bit like an elephant, and we, as 
blind analysts, must use various tests and visualizations to understand how 
a model is fit in multidimensional space. There are many quantitative metrics 
that provide insight into different aspects of model fit; however, relying on 
one metric exclusively can be misleading and result in an incomplete picture 
of performance.

If the model is designed solely to explore the relationship between predic-
tors and a response (such as risk factors and an outcome), we might evaluate 
these metrics on the data used to fit the model—the study population or sam-
ple. However, if the goal is to use the model for out-of-sample predictions, it 
is typically assessed using training and testing (or derivation and validation) 
datasets. In this process, a portion of the data (e.g., 80%) is used to train the 
model, and the remaining 20% is reserved for testing, providing unseen data 
to evaluate the model’s performance through a variety of metrics. More thor-
ough methods, such as k-fold cross-validation, can also be applied so that 
all data can be used to fit and evaluate the model. This approach mitigates 
potential sampling error introduced by the testing dataset.

Assessing Model Fit in Healthcare Statistics: 
Linear, Logistic, and Poisson Regression

Let’s review some standard techniques for measuring model fit. We’ll 
simplify the discussion by considering model fit using linear, Poisson, 
and logistic regression.

Linear Regression Model Fit

I prefer to start with inspecting the results using a bivariate scatterplot. In this 
approach, the observed response variables are plotted on the x-axis, and the 
estimated values (i.e., our predictions) are plotted on the y-axis. I also prefer to 
add an alignment line with an intercept of 0 and a slope of 1 (Figure 5.2). An 
ideal model will show balanced error on both sides of the line, with constant 
variance across the observed response values without deviating in one direc-
tion. This visualization can also reveal outlier values that may affect model fit.

The mean squared error (MSE) is another helpful metric, especially when 
incremental improvements to model fit are difficult to detect visually (or 
when we report model fit in presentations, white papers, and publications). 
MSE is the mean of the squared residuals (i.e., the differences between our 
predictions and observed values).
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R-squared and Pearson’s correlation coefficient are also useful metrics that 
quantify the percentage of variation in the response by the model predictors. 
Still, we would not want to rely on these metrics exclusively. It is quite possi-
ble for a model to have a high R-square value while exhibiting a sub-optimal 
fit. For example, a slight nonlinear relationship between the predicted and 
observed values may exist despite a high R-square value. Overall, the model 
may be performing satisfactorily, but a greater degree of error might exist on 
the extremes of the response distribution.

Collectively evaluating the model through a combination of these tech-
niques will, like the blind men, prove the most complete picture of our model.

Logistic Regression Model Fit

With logistic regression, the outcome variable is binary. While we can 
attempt to plot the residuals as we did with linear regression, a more inter-
pretable visualization is the box plot. In this visualization, separate box 

FIGURE 5.2
Visualization of an example of OLS regression fit.
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and whisker plots for observed positive and negative cases (i.e., cases with 
the outcome and cases without) are plotted against the probabilities pro-
duced from the logistic regression model. Using this approach, we assess 
the range of values for each outcome (positive and negative), aiming to cre-
ate greater separation between the two distributions. A logistic regression 
that perfectly discriminates between positive and negative cases (assuming 
a probability threshold value) will exhibit no overlap in the distributions 
(represented through the box and whiskers). Figure 5.3 shows the boxplot 
comparing estimated probability distribution between true cases of read-
missions and non-readmissions.

A confusion matrix, as shown in Table 5.6, is also an incredibly help-
ful tool to quantify different types of model error. Perhaps we’re predict-
ing CAUTIs (catheter-associated urinary tract infections) for inpatients 
as part of a real-time alerting tool. Our model might predict high CAUTI 
risk on a patient’s age, catheter days, and other infections. There are times 

FIGURE 5.3
Boxplot comparing the predicted probability distributions between observed readmitted and 
non-readmitted cases.
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when we will predict high CAUTI risk when no CAUTI develops. This 
scenario would be considered a false positive. It is a false alarm. Another 
scenario would be the occurrence of CAUTI when our model predicts low 
CAUTI risk. This scenario would be considered a false negative. Other 
scenarios could be that we predict low CAUTI risk and no CAUTI occurs 
(a true negative), or we predict high CAUTI risk, and CAUTI does happen 
(a true positive).

The confusion matrix is my favorite communication tool for logistic regres-
sion models and other classification models for clinical stakeholders. It is 
straightforward and easy to explain. If the model were to be implemented in 
a production setting, everyone would have an upfront understanding of the 
types (false positives or false negatives) and respective expected frequencies 
of the errors in the employed model.

The receiver operating characteristic (ROC) curve, as shown in Figure 5.4, 
is another helpful metric in evaluating models with binary outcomes. It is 
designed to show the balance of the true positive rate and false positive rate 
across probability thresholds.

The ideal model using an ROC curve would show the bend of the curve as 
close as possible to the top left corner—with 100% true positives and 0% false 
positives. A related metric is the area under the curve (AUC) metric, which 
quantifies the percentage of data under the curve. The AUC would be 1 (or 
100%) in our perfect scenario discussed above. The benefit of this metric is 
that it is a threshold-less method of evaluating model fit.

If we use the logistic regression model to measure associations between 
predictors and response, we generally do not need a threshold value—that 
is, the probability at which we will predict a positive case. However, if we 
want to deploy our model and make predictions, we must decide on the 
probability value at which we identify a positive case. In our CAUTI alerting 
example, we might alert the infection preventionist when a high CAUTI risk 
is detected.

How do we pick a probability threshold? One method would be using a 
metric that balances true and false positives. A probability threshold that is 

TABLE 5.6

A Confusion Matrix Comparing Predictions Versus Reality

Reality

Yes No

Prediction Yes True Positive False Positive (Type I Error)
No False Negative (Type II Error) True Negative
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too high will improve the accuracy of the predictions we make but might 
increase our false negatives. A low probability threshold might increase 
our false positive rate (due to making predictions with lower probabili-
ties). Youden’s J statistic is a threshold value that balances true positives 
with false positives by identifying the point on the ROC curve closest to 
the top left corner (the theoretical point of perfect fit). It is essentially the 
point of the curve that minimizes the Euclidean distance to the perfect 
point.

An analogous measure to MSE for logistic regression is deviance. While a 
bit less interpretable, it is a valid relative measure to assess model fit, espe-
cially when experimenting with alternative models and evaluating the utility 
of additional predictors.

FIGURE 5.4
Example Receiving Operating Characteristic (ROC) Curve with Youden's J Statistic as an opti-
mal probability threshold.
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Poisson Regression Model Fit

Poisson regression, like linear regression, can be evaluated visually using 
scatterplots as described in the previous section on linear regression. Given 
that Logistic regression and Poisson regression are GLMs using different 
distributions, the deviance metric can also be a robust metric for evaluating 
incremental changes to the model to improve fit.

Variable Selection

In many cases, only a subset of the available predictor variables is relevant 
to our business problem. Being selective about predictors included in the 
model can provide greater focus and interpretability. In some cases, there 
may be hundreds or thousands (especially in the field of genomics) of can-
didate predictors that we must sift through to identify those relevant to the 
model. This is where the game is played with variable selection. In out-
comes modeling, removing too many variables can result in a less optimal 
model, as important explanatory information is lost. Using too many vari-
ables can cause the model to be bloated and overly complex, increasing the 
chances of overfitting the data.

I believe that this is one of the most critical aspects of the modeling pro-
cess. Newcomers to the field generally get excited about the range of sta-
tistical models themselves and all the clever dials (hyperparameters) that 
can be tuned to improve model fit. Far more important than fine-tuning 
the technical aspects of the model is ensuring that the variables included 
are appropriate for the research question. Carefully curating a set of pre-
dictors will result in a more credible model that can be defended when 
presenting to clinical stakeholders. While we need to use data-driven 
strategies for selecting variables in many instances, there should always 
be a balance between domain knowledge and the technical process used 
to select variables.

In this section, we’ll discuss some strategies for selecting variables and 
their benefits and drawbacks.

Data-Driven Variable Selection

Stepwise variable selection is usually the first strategy suggested when 
attempting to limit the number of predictor variables in a model. This process 
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involves either incrementally adding variables (forward selection) or incre-
mentally removing variables (backward selection) and assessing model fit 
with each iteration to determine if the evaluated variable should be included 
(or excluded). An even more thorough approach is to use a combination of 
forward and backward selection. In this process, performance metrics such 
as the Akaike information criterion (AIC) or the more conservative Bayesian 
Information Criterion (BIC), are used to balance model complexity with model 
fit. Only variables that help materially explain the outcome are retained in 
the model in this process. In this scenario, highly correlated variables will 
likely be excluded from the stepwise process.

Another challenge with stepwise models is that they can be computation-
ally intensive, as a model is fit for each iteration in the forward and backward 
stepwise process. While stepwise modeling is generally the most common 
data-driven method for variable selection, it can also be dangerous, espe-
cially when used to predict health outcomes.

Here’s an example: let us say we are evaluating a broad set of chronic 
conditions to understand their association with readmission occurrences 
in the med/surg setting. Our stepwise model considers both Type II dia-
betes and hypertension, among many other variables. In the stepwise 
process, it is determined that the Type 2 diabetes predictor contributes 
significantly to the model, and hypertension evaluated in another iter-
ation in the stepwise process is excluded for not adding materially to 
the model fit beyond the information captured in the Type II diabetes 
variable.

While the model fit might be improved (complexity being considered), we 
could end up with a model that accounts for the mortality risk for patients 
with hypertension but not Type II diabetes. No additional risk is detected 
for the hypertension patient because we’ve excluded that variable from the 
model.

Another comon approach for variable selection is through regression 
models that penalize coefficients from being too extreme to the point that 
some coefficients are either reduced to zero or have minimal influence on 
the model. This family of “penalized regression” includes models such as 
Lasso and Ridge regression. These, too, can result in similar challenges 
(as correlated variables may be excluded (or minimized); however, they 
are quite efficient at optimizing as the model is only fit once, and the beta 
coefficients are iteratively reduced through a secondary process. We’ll talk 
more about these in the section on highly dimensional data (as they are 
used as a preliminary variable selection technique and standalone models 
on their own).
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Manual Curation

There is danger in the mindset of just letting the algorithm figure out the 
right variables (an all-too-common approach in many organizations). An 
approach at the other extreme is the manual selection of predictors based 
on subject matter expertise. This approach produces models that are well-
grounded in domain knowledge and easy to defend. The drawback of this 
method is that we might overlook essential predictors. Human subject mat-
ter experts will provide important information but often cannot readily cata-
log all potential risk factors from memory (or even through a review of the 
academic literature). Data-driven methods are great at bringing important 
candidate variables to the table for consideration that may not be on top of 
mind to subject matter experts.

A Hybrid Approach

Generally, the preferred approach is a hybrid of the data-driven assessment 
of the data and the manual curation of variables to refine the candidate set 
of predictors further. One way to go about a hybrid approach would be to 
fit univariate models for each potential predictor. We could, for example, 
iterate over a set of comorbidities for conditions present on admission to 
surface candidate variables that have a statistically significant association 
with the outcome of interest. This process can serve as an initial filter so the 
subject matter experts can further reduce the predictors to those that make 
clinical sense.

One might ask, why not just run a multiple regression model to see which 
variables are significant? Is the univariate approach necessary? The difficulty 
is the potential correlation of variables. Correlated variables can often result 
in sign changes of the coefficients (a change from positive to negative or vice 
versa). As a result, blindly throwing all variables into a model might muddy 
the waters.

Once a subject matter expert reviews a set of statistically significant vari-
ables (from the univariate model), we have a base set of validated candidate 
variables that may be considered in the final stages of modeling. In my opin-
ion, a hybrid approach, when possible, results in a model that is clinically 
valid but informed by known associations in the data.

TLDR: A combination of domain knowledge and data-driven methods 
should be considered for variable selection Figure 5.5.
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FIGURE 5.5
Workflow for choosing an appropriate regression model.
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6
Advanced Regression Modeling

As statisticians, data scientists, and researchers, we regularly encounter new 
data scenarios, and on occasion, basic methods, such as linear, Poisson, and 
logistic regression, will be insufficient.

In this section, we will discuss a broader range of models and techniques 
that are often excluded from a beginner’s guide. While it is not possible to 
provide an exhaustive review of these methods, I do think it’s vital that the 
reader be aware of them so that they may be pursued further when encoun-
tering these more challenging scenarios. In my experience, these are the 
models that newcomers often lack knowledge of, causing them to jump too 
quickly to ML-based approaches.

The content in this section is problem-based, and in some cases, multiple 
options are provided to address specific data scenarios.

This will be a bit of a speed dating session to see if a model might be a good 
fit for your data problem. Like any relationship, you might find a good match, 
but I encourage you to get to know these models to understand their unique 
quirks before fully committing. Additional resources are provided at the end 
of this chapter, along with some recommended readings. Table 6.1 further 
provides an overview of the data scenarios analysts will likely encounter that 
might lead them to abandon regression methods. With each data scenario, a 
proposed regression variant is suggested as an intermediate step before mak-
ing the leap to a fully blown ML approach.

Non-linearity

Earlier in this chapter, I mentioned that generalized additive models (GAMs) 
are my secret weapon when presented with challenges of non-linearity. Here’s 
a real-world example. In evaluating the risk of maternal complications, both 
pediatric pregnancies (younger mothers) and geriatric pregnancies (older 
mothers) have an increased risk of eclampsia—a life-threatening complica-
tion of pregnancy characterized by sudden development of seizures.

http://dx.doi.org/10.1201/9781003609759-6
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Regression coefficients are suitable for identifying linear relationships, so 
a linear coefficient would be acceptable if risk increases proportionately with 
age. In the case of eclampsia, we can observe a parabola-shaped risk curve, 
whereby younger and older patients are at greater risk for eclampsia, with a 
lower-risk population in the middle of the age range.

With non-linear relationships, we could consider transforming the predic-
tor variable itself. For example, we might experiment with log, quadratic, or 
cubic transformations to improve the linear fit. We could also consider bin-
ning the data so that each segment is its own categorical variable. However, 
there is a point at which complex non-linear relationships cannot easily be 
modeled through simple transformations of the predictors. At that point, we 
must seek out more robust methods.

Enter GAMs. The beauty of a GAM is that complex nonlinear relationships 
between each predictor variable and response using spline functions—which 
are piecewise-defined polynomial functions designed to model nonlinear 
relationships. There you go again, Michael, with your fancy word soup. I’m sorry. 
Let me explain.

A spline function is a mathematical function that shows continuous change 
over the range of predictor variables. The optimization process in a GAM 
will divide the predictor variable into segments (smaller ranges) and fit a rel-
atively simple polynomial equation to each segment. The connection points 
between segments (i.e., “knots”) are further constrained to be continuous, 

TABLE 6.1

Modeling Options for Common Data Scenarios

Problem Options

Non-linear relationship between 
response and predictor

Option 1: Transformations of response and/or 
predictors (log, quadratic, cubic transformations)

Option 2: GAMs (using spline functions)
Data is highly correlated Option 1: Stepwise Modeling

Option 2: Penalized Regression (Lasso/Ridge)
Option 3: Regression with Principal Components (my 
preference)

Multiple response variables Option 1: Stratification: One vs. All (OVA)
Option 2: Mutinomial/Multivariate Regression 
(depending on outcome type)

Multiple levels of data Option 1: Mixed-effect/hierarchical models
Response variable has lots of zeros Option 1: Zero-inflated regression
Response is ordinal Option 1: Ordinal regression
Outcome is dependent on 
exposure/observation time

Option 1: Rate regression

Complex interaction among 
predictors

	 1.	Manual curation of interaction terms (my preference 
when possible)

	 2.	Penalized regression (Lasso Ridge)
	 3.	Consider alternative models (e.g., tree-based models)
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ensuring smooth transitions between the knots. This construction allows 
splines to capture complex, non-linear patterns in data while maintaining 
smoothness. Note that splines are generally the preferred smoothing func-
tion, but other functions can be employed.

In short, we can use a GAM when a non-linear relationship between our 
predictor and response variable cannot be resolved through simple transfor-
mations to our predictor variables. I prefer to use spline functions for patient 
age for example, as patient risk is naturally non-linear. Depending on the 
disease group being evaluated, the risk of an outcome can vary considerably 
across age ranges, as the risk of mortality between ages 20 and 30 is much 
different than the change in risk between ages 70 and 80, despite both being a 
ten-year increase in age. A spine function will naturally account for the vary-
ing risk across age groups.

For demonstration, it is easy to conceptualize a GAM model for a continu-
ous response. It should be noted that GAMs, like GLMs, can also be used 
to model other data distributions in the exponential family of distributions 
(e.g., binomial, Poisson, gamma).

	 ( ) ε= + +Length of Stay Intercept f Age

Or more generally

	 ( )α ε= + +Y f X

where

( )f Age  represents a smooth function of age to capture non-linear between 
age and LOS.

Let’s look at an example implementation in Python.

import pandas as pd
from pygam import LinearGAM, s
import matplotlib.pyplot as plt
import numpy as np

data = {
    'Age': [25, 30, 40, 50, 60, 35, 45, 55, 65, 75, 25, 
30, 40, 50, 60, 35, 45, 55, 65, 75],
    'Length_of_Stay': [1, 1, 19, 34, 67, 10, 20, 42, 91, 
143, 8, 1, 13, 34, 66, 4, 15, 60, 90, 144]
}

df = pd.DataFrame(data)
gam = LinearGAM(s(0), verbose=True).fit(df[['Age']], 
np.log(df['Length_of_Stay']))
print(gam.summary())
intercept_value = gam.predict(np.array([[0]]))  # Provide 
a data point with Age set to 0
print("Intercept Value:", intercept_value[0])
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XX = gam.generate_X_grid(term=0)
pdep, confi = gam.partial_dependence(term=0, X=XX, 
width=0.95)

plt.figure()
plt.plot(XX, pdep)
plt.fill_between(XX[:, 0], confi[:, 0], confi[:, 1], 
alpha=0.3)
plt.title("Partial Dependence Plot for Age")
plt.xlabel("Age")
plt.ylabel("Partial Dependence")
plt.xlim(25, 75)  # Limit the x-axis to the age range of 
25 to 75
plt.show()

Figure 6.1 shows the “partial dependence” plot of the age predictor vari-
able, modeled as a spline function in our GAM against length of stay (log-
transformed) as our response variable.

FIGURE 6.1
Partial dependence plot for the age predictor variable used in a GAM.
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The plot’s primary curve demonstrates the outcome variable’s partial 
dependence on the selected feature. It shows how the predicted outcome 
changes as the predictor “Age” increases. Notice that the log length of stay 
risk increases nonlinearly with age.

Also, notice the shaded areas around the main curve representing confi-
dence intervals. These intervals depict the model’s uncertainty about its pre-
dictions. Wider intervals indicate greater uncertainty about the associations 
at that range of the predictor. It is common to see the error bands flute at the 
two ends of the range of predictor values as fewer data points generally exist 
at the edges, resulting in more uncertainty.

We can accomplish the same results using the mgcv in R to fit the GAM 
model

library(mgcv)

data <— data.frame(
  Age = c(25, 30, 40, 50, 60, 35, 45, 55, 65, 75, 25, 30, 
40, 50, 60, 35, 45, 55, 65, 75),
  Length_of_Stay = c(1, 1, 19, 34, 67, 10, 20, 42, 91, 
143, 8, 1, 13, 34, 66, 4, 15, 60, 90, 144)
)

gam_model <- gam(log(Length_of_Stay) ~ s(Age), data = 
data, method = "REML")

summary(gam_model)

intercept_value <- predict(gam_model, newdata = data.
frame(Age = 0))
print(paste("Intercept Value:", intercept_value))

age_grid <- seq(25, 75, length.out = 100)
partial_dep <- predict(gam_model, newdata = data.
frame(Age = age_grid), type = "link")

plot(age_grid, partial_dep, type = "l", col = "blue", lwd 
= 2,
     xlab = "Age", ylab = "Partial Dependence",
     main = "Partial Dependence Plot for Age")

Highly Correlated Variables (Multicollinearity)

One of the most vexing aspects of modeling clinical data is the correla-
tion between a patient’s diagnoses and procedures. Often, one comorbid-
ity is part of the causal pathway of another (e.g., hypertension and Type II 
Diabetes). Additionally, procedures and other services are conditional on 
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other diagnoses (e.g., amputation of the toes for Type II Diabetics). As such, 
it makes sense that diagnoses and procedures are highly correlated.

Highly correlated variables or multicollinearity can result in erroneous sign 
changes in the coefficients, further inflating their standard error. We touched 
on this topic in the variable selection section of this chapter. Still, given the 
disastrous effects of highly correlated variables on interpreting predictor and 
response associations, it is worth dedicating more time to it.

Building a correlation matrix showing the degree to which the predictor 
variables are correlated (and the direction of that correlation) can be helpful 
in the data exploration process. I see this as a critical step in the modeling 
process; however, it is not sufficient on its own (Figure 6.2).

Sometimes, one variable may not be directly correlated with other predic-
tor variables, but it is redundant through the linear combination of other 
variables. That is, some predictor variables can be approximated through the 
combined information of other predictor variables. This, too, can cause simi-
lar issues with the interpretation of model coefficients.

FIGURE 6.2
Correlation plot showing correlation among predictor variables.
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Variance Inflation Factors

The variance inflation factor (or VIF) is a common technique for identifying 
such variables. The VIF helps us understand how much the accuracy of our 
regression model might be affected by multicollinearity. It quantifies how 
much the variance is inflated in our model coefficients.

If we have a model with several correlated predictors, the VIF, for example, 
“BMI”, is calculated by regressing each predictor variable on the other pre-
dictor variables and measuring the increase in its variance (e.g., “weight” 
and “height”). The larger the VIF, the more its variance is inflated due to its 
correlation with other predictors.

Let’s look at an example calculation of the VIF in Python using a model 
where a complication is being predicted from a set of comorbidities.

import pandas as pd
import numpy as np
from statsmodels.stats.outliers_influence import 
variance_inflation_factor
from statsmodels.tools.tools import add_constant
from sklearn.linear_model import LogisticRegression

np.random.seed(123)

df = pd.DataFrame({
    'Comorbidity1': np.random.rand(100),
    'Comorbidity2': np.random.rand(100) + 0.1,
    'Comorbidity3': np.random.rand(100) + 0.05,
    'Comorbidity4': np.random.rand(100) + 0.09,
    'Comorbidity5': np.random.rand(100) + 0.7,
    'Complication': np.random.choice([0, 1], size=100)
})

X = add_constant(df[['Comorbidity1', 'Comorbidity2', 
'Comorbidity3', 'Comorbidity4', 'Comorbidity5']])
y = df['Complication']

vif_results = pd.DataFrame()
vif_results['Variable'] = X.columns
vif_results['VIF'] = [variance_inflation_factor(X.values, 
i) for i in range(X.shape[1])]

print("VIF results:\n", vif_results)

In R, we can use the vif function from the car package to accomplish the 
same results:
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library(car)

set.seed(123)
df <- data.frame(
  Comorbidity1 = runif(100),
  Comorbidity2 = runif(100) + 0.1,
  Comorbidity3 = runif(100) + 0.05,
  Comorbidity4 = runif(100) + 0.09,
  Comorbidity5 = runif(100) + 0.7,
  Complication = sample(c(0, 1), 100, replace = TRUE)
)

lm_model <- lm(Complication ~ Comorbidity1 + Comorbidity2 
+ Comorbidity3 + Comorbidity4 + Comorbidity5, data = df)

vif_results <- vif(lm_model)

print(vif_results)

To interpret VIF values, a VIF of 1 means that there’s no correlation 
between the evaluated predictor and the other predictors, so the variance 
is not inflated. Generally, VIFs exceeding 4 suggest a need for investigation, 
and VIFs over 10 indicate serious multicollinearity that should be addressed 
in your model.

When we encounter scenarios where variables contain duplicative infor-
mation, we can surgically correct them. For example, we might group two 
similar variables into a broader indicator or category so that neither is 
excluded. We could also create an interaction term (the product of the two 
variables) so that the cooccurrence of those variables is controlled for in the 
modeling process (more on this later).

Principal Component Analysis in Regression

A few years ago, I collaborated with a team of statisticians, researchers, clini-
cians, and public health practitioners to better understand the association 
between social drivers of health (SDoHs) and clinical outcomes across cer-
tain disease groups. Our goal was to capture multiple aspects of SDoH, but 
we were concerned about the duplicative information in many of the vari-
ables in the dataset. Variables related to home value, access to transporta-
tion, income, disability, and uninsured status generally correlate but contain 
unique information that might explain a patient’s health status. Our goal 
was to look across the variables to identify the unique aspects of SDoH risk 
across those variables. This is precisely the type of problem that principal 
component analysis (PCA) is designed to address. It is useful when we have 
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a dataset comprising correlated variables, especially when it is highly dimen-
sional (e.g., many predictors).

The finesse of PCA is that we can extract unique aspects of the data across 
variables. If you talk to statisticians about PCA, they might describe this pro-
cess as mapping variables to lower-dimensional space. The result with PCA 
is a set of principal components—each capturing a unique uncorrelated aspect 
of the data. For the SDoH example, the first principal component might cap-
ture aspects of wealth (that are captured across variables like income, home 
value, and uninsured status). Another principal component might capture 
aspects of disability, while another might capture aspects of rurality. Note 
that it is not always clear what aspect of the data is being captured (but there 
are tricks we can use to help make principal components more explainable).

The derived principal components can be used in a compressed (or lower-
dimensional) form of a larger set of variables to simplify the algorithm and 
mitigate data redundancy issues. Structurally, PCA generates principal com-
ponents that do not correlate with each other. We can, in turn, use these prin-
cipal components as predictor variables in the regression (rather than the 
raw predictor variables from which they are derived).

	 α β β= + +…+1 1Y n nPC PC

With PCA, we can have our cake and eat it, too—that is, we can use all the 
variables without concern for multicollinearity, and we are not forced to 
exclude variables that include potentially helpful information, as is the case 
with stepwise variable selection and penalized regression.

PCA is an unsupervised method that derives the principal components 
without a response variable. We are simply extracting the unique aspects of 
the data that are most dominant across all variables. Each principal compo-
nent explains some degree of variation in the data, so the cumulative vari-
ance explained by all principal components would be 100%. It is important 
to select a subset of the principal components that capture most, but not all, 
of the variation in the data.

A “scree plot” is a valuable tool for visualizing the percent of variation 
explained by each principal component. With highly correlated data, the first 
few principal components should explain a larger share of the total variance. 
With data that has minimal correlation, we should see less disparity between 
the variation explained by the principal components.

Different strategies exist for selecting the ideal number of principal com-
ponents. One common approach is to take all the principal components 
necessary to explain 80% of the variation in the data. This approach can be 
challenging, depending on how imbalanced the variation explained across 
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the principal components is. Another method, which is a bit of an art form 
(but perfectly valid), is to identify the inflection point where we see a precipi-
tous drop in the variation explained in the scree plot.

Let’s look at a “scree plot” as part of this process.
In this example (Figure 6.3), the first two components explain most of the 

variation in the data, so we might choose this limited set of principal compo-
nents to use as predictors in our final model.

PCA is sensitive to the magnitude and skew in the data, so an important 
preprocessing step is to center and scale the data (typically with z-score scal-
ing). Otherwise, a variable like income will overpower other variables, such 
as food insecurity, simply due to magnitude. Another limitation is that PCA 
performs best with continuous variables (although a sprinkling of binary 
variables will not be too disruptive). If the dataset used for the analysis is 
all (or primarily) binary, there are variants of PCA better suited for those 
datasets.

FIGURE 6.3
Scree plot from PCA model showing the percentage of variance explained with each principal 
component.
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Let’s now look at a more complete picture of how PCA can be used in 
conjunction with regression to overcome challenges with multicollinearity. 
In this problem, we have a response variable (30-day readmission) with a set 
of correlated SDoH variables (education, income, housing, food insecurity, 
transportation, and social support).

Python

import pandas as pd
import numpy as np
import statsmodels.api as sm
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

data = {
    'Education': [12, 14, 10, 16, 8, 12, 14, 13, 15, 11, 
12, 14, 10, 16, 8, 12, 14, 13, 15, 11],
    'Income': [35000, 42000, 30000, 52000, 25000, 33000, 
41000, 39000, 48000, 29000, 35000, 42000, 30000, 52000, 
25000, 33000, 41000, 39000, 48000, 29000],
    'Employment': [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 
1, 0, 1, 0, 1, 1, 0],
    'Housing': [1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 
0, 1, 0, 1, 1, 0],
    'FoodSecurity': [3, 2, 1, 3, 1, 2, 1, 3, 3, 1, 3, 2, 
1, 3, 1, 2, 1, 3, 3, 1],
    'Transportation': [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 
0, 1, 1, 0, 1, 0, 1, 1, 0],
    'SocialSupport': [4, 3, 3, 5, 2, 4, 3, 5, 5, 2, 4, 3, 
3, 5, 2, 4, 3, 5, 5, 2],
    'CommunitySafety': [3, 2, 2, 4, 1, 3, 2, 4, 4, 1, 3, 
2, 2, 4, 1, 3, 2, 4, 4, 1],
    'AccessToHealthcare': [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 
1, 0, 1, 1, 0, 1, 0, 1, 1, 0],
    'AirQuality': [2, 3, 2, 3, 1, 2, 3, 2, 2, 1, 2, 3, 2, 
3, 1, 2, 3, 2, 2, 1],
    '30DayReadmission': [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 
0, 1, 1, 0, 1, 0, 1, 0, 1],
}

df = pd.DataFrame(data)

X = df.drop('30DayReadmission', axis=1)
y = df['30DayReadmission']

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
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pca = PCA(n_components=2)
principal_components = pca.fit_transform(X_scaled)

pca_df = pd.DataFrame(data=principal_components, 
columns=['PC1', 'PC2'])

pca_df['30DayReadmission'] = y

X_pca = sm.add_constant(pca_df[['PC1', 'PC2']])
model = sm.Logit(y, X_pca)
result = model.fit()

print(result.summary())

R

library(stats)
library(caret)

set.seed(123)

df <- data.frame(
  Education = c(12, 14, 10, 16, 8, 12, 14, 13, 15, 11, 
12, 14, 10, 16, 8, 12, 14, 13, 15, 11),
  Income = c(35000, 42000, 30000, 52000, 25000, 33000, 
41000, 39000, 48000, 29000, 35000, 42000, 30000, 52000, 
25000, 33000, 41000, 39000, 48000, 29000),
  Employment = c(1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 
1, 0, 1, 0, 1, 1, 0),
  Housing = c(1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 
0, 1, 0, 1, 1, 0),
  FoodSecurity = c(3, 2, 1, 3, 1, 2, 1, 3, 3, 1, 3, 2, 1, 
3, 1, 2, 1, 3, 3, 1),
  Transportation = c(1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 
1, 1, 0, 1, 0, 1, 1, 0),
  SocialSupport = c(4, 3, 3, 5, 2, 4, 3, 5, 5, 2, 4, 3, 
3, 5, 2, 4, 3, 5, 5, 2),
  CommunitySafety = c(3, 2, 2, 4, 1, 3, 2, 4, 4, 1, 3, 2, 
2, 4, 1, 3, 2, 4, 4, 1),
  AccessToHealthcare = c(1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 
0, 1, 1, 0, 1, 0, 1, 1, 0),
  AirQuality = c(2, 3, 2, 3, 1, 2, 3, 2, 2, 1, 2, 3, 2, 
3, 1, 2, 3, 2, 2, 1),
  ThirtyDayReadmission = c(1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 
1, 0, 1, 1, 0, 1, 0, 1, 0, 1)
)
X <- df[, -which(names(df) == "ThirtyDayReadmission")]
y <- df$ThirtyDayReadmission
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X_scaled <- scale(X)

pca_result <- prcomp(X_scaled, center = TRUE, scale. = 
TRUE)
principal_components <- pca_result$x[, 1:2]  # Select the 
first two principal components

pca_df <- data.frame(PC1 = principal_components[, 1], PC2 
= principal_components[, 2])
pca_df$ThirtyDayReadmission <- y

model <- glm(ThirtyDayReadmission ~ PC1 + PC2, data = 
pca_df, family = binomial)

summary(model)

In this case, PCA is a preprocessing step that compresses this set of corre-
lated variables before using them in a logistic regression (i.e., a GLM with a 
binomial distribution).

But Mike, how can I explain a principal component to a clinician stakeholder? 
That doesn’t seem very explainable to me. We are admittedly sacrificing some 
interpretability to have more complete and useful data with PCA. That said, 
some tricks can help us in these conversations.

My favorite method when explaining regression models that use PCA is to 
build a correlation matrix between the principal components and the original 
predictor variables. Let’s explain this by way of example.

We can see in the mock data provided in Figure 6.4 that the first prin-
cipal component is correlated with the most variables (which is the 
expected behavior with PCA). It is the component that is explaining the 
most dominant aspect of the data set. Notice that as we move to the sec-
ond principal component, it is generally correlated with different pre-
dictor variables than the first components. Remember, PCA is designed 
to capture unique uncorrelated (i.e., orthogonal) aspects of variation in 
the data. With each principal component, we can see less variation being 
explained by the additional components (which aligns nicely with our 
scree plot).

I have found that this type of visualization is helpful in that it clearly shows 
which variables are correlated with each principal component. In many cases, 
the cluster of variables associated with a principal component can be given 
an intuitive name (e.g., “aspects of poverty”, or “aspects of rurality) to help 
the consumer understand the how the principal component variables play a 
part subsequent fitted model.

When using PCA in a regression model, we can interpret the coeffi-
cients in the same way. We can say for example that there is a statistically 
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FIGURE 6.4
Correlation between the raw predictor variables and their derived principal components.
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significant association between aspects of poverty and mortality. We might 
even include a set of raw variables (such as age, sex, and disease group) 
as predictors along with the SDoH principal components to understand 
the associations between SDoH principal components, after controlling 
for patient clinical and demographic characteristics. That is, we have the 
option to compress certain domains of data that are high-dimensional 
in nature and use them along with other variables outside of the PCA 
modeling.

Multiple Response Variables

The models discussed at the beginning of this chapter involved one response 
variable; however, there are times when the research question considers 
the possibility of multiple outcomes. As discussed in Chapter 2, there is the 
potential for a host of complications within the inpatient setting, includ-
ing CMS Hospital Acquired Conditions (HACs), NHSN HAIs, and AHRQ 
Patient Safety Indicators (PSIs). Warning: Acronym overload! See Chapter 2 
if these didn’t make any sense. In our research question, perhaps we want 
to know the probabilities associated with each complication, conditional on 
a set of patient characteristics. Let’s consider a few ways to approach this 
problem.

Stratification

Perhaps the most intuitive approach to this problem is to build a model for 
each outcome. If there are 50 possible complications, we would create 50 
logistic regression models to produce 50 probabilities (one for each com-
plication type). While this type of modeling is a perfectly fine approach, 
there is a fair amount of overhead in the construction and (in the case 
of a deployed model) support of each model. Imagine if we wanted to 
stratify our models further to account for the unique risk associated with 
maternity and pediatric patients. Anaphylactic shock might be more rel-
evant to pediatric patients, and eclampsia might be a complication more 
specific to maternity patients. Stratification in this way would certainly 
make clinical sense. However, for each outcome, we would have three 
substrata (maternity, pediatric, and other) and 150 models to develop and 
support. Yuck!
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Stratification could also be employed for continuous outcomes. Perhaps 
we want to estimate patient cost within each revenue code (or cost bucket). 
Separate models could be developed for each cost type, but again, we must be 
cautious about the overhead with such an approach. While stratification is a 
valuable approach to account for the unique relationships between predictors 
(e.g., patient factors) and a response (e.g., outcome) within a particular stra-
tum, the overhead involved in supporting such models should be considered. 
More sophisticated methods can be employed to estimate multiple continu-
ous or binary outcomes. Rather than stratifying models based on each distinct 
outcome (e.g., complication types or revenue code-specific cost), we could 
consider a class of models specifically designed to model multiple responses.

Multinomial Regression

Multinomial regression is a general term used to describe regression models 
when the response variable has multiple categories (two or more) that are 
not ordered or hierarchical —that is, a nominal outcome. The base multino-
mial model requires that the outcomes being modeled are mutually exclu-
sive. Only one of the outcomes is possible at a time. A variant of multinomial 
regression is multinomial logistic regression (MLR). This model would allow 
us to compute a probability for each distinct outcome. In our complications 
example, an MLR would enable us to develop a unified model that produces 
the probabilities for each outcome using the same set of predictor variables 
(or patient factors).

Here’s a relevant code snippet in Python using statsmodels:

Multinomial: model = sm.MNLogit(df[['arrhythmias', 
'pulmonary_edema', 'hypotension', 'infection']], X)

Likewise in R, using the nnet package:

model <- multinom(cbind(arrhythmias, pulmonary_edema, 
hypotension, infection) ~ X, data = df)

In MLR, we model the probability that an observation falls into one of 
multiple categories or classes. The coefficients in the MLR represent the 
association between the predictor variables and the log odds of the different 
categories relative to a reference category.

These coefficients indicate how a one-unit change in that predictor variable 
is associated with the log odds of being in a particular category compared to 
the reference category.

The coefficients can be exponentiated to obtain an odds ratio to make 
the interpretation more intuitive. This ratio represents the multiplicative 
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change in the odds of belonging to a specific category for a one-unit 
change in the predictor variable compared to the reference category. As 
with logistic regression (with a binary outcome), an odds ratio greater 
than 1 indicates an increase in the odds, while an odds ratio less than 1 
indicates a decrease.

Multivariate Regression

In the case of the cost example, we could consider multivariate regression. 
This should not be confused with multiple (or multi-variable) regression 
referenced earlier in this chapter. Multivariate regression refers to a unified 
model with multiple continuous outcomes. In the cost example, we could 
generate an estimated cost for a patient for each revenue code (“room and 
board”, “labs”, “imaging”, etc.) based on a single set of patient characteris-
tics—comorbidities, complications, and procedures, perhaps.

A multivariate regression model typically has a set of coefficients for each 
outcome (response variable). Each outcome variable has its own set of coef-
ficients associated with the predictor variables, which describe how each pre-
dictor variable affects each outcome variable.

For example, suppose we have three outcome variables (e.g., room and 
board, labs, and imaging) and four predictor variables (e.g., age, sex, ms-
drg, and admission source). In that case, you will have a set of coefficients 
for each predictor variable for each outcome variable. This means that you’ll 
have three sets of coefficients for room and board, three sets of coefficients 
for labs, and so on.

Since statsmodels does not support multiple response variables at the 
time of this book, we can use sklearn instead. Note that we have three 
response variables and three predictors in this excerpt of code, and therefore, 
we have three intercepts and three sets of coefficients.

from sklearn import linear_model
import pandas as pd
clf = linear_model.LinearRegression()
clf.fit(df[['room_and_board', 'labs', 
'imaging']],df[['age','sex','ms_drg']])
print("Coefficients (Room and Board): "+ str(clf.
coef_[[0]]))
print("Intercept (Room and Board): " + str(clf.
intercept_[[0]]))
print("Coefficients (Labs): "+ str(clf.coef_[[1]]))
print("Intercept (Labs): " + str(clf.intercept_[[1]]))
print("Coefficients (Imaging): "+ str(clf.coef_[[2]]))
print("Intercept (“Imaging): " + str(clf.
intercept_[[2]]))
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In R, we can simply use the lm() function. In the provided code, we fit a 
linear model where three response variables (room_and_board, labs, imag-
ing) are modeled as a function of three predictors (age, sex, ms_drg). The 
cbind() function is used to combine the response variables into a matrix for-
mat, which can be used in the lm() function.

To extract the coefficients and their confidence intervals, we use the tidy() 
function from the broom package. This allows us to create a data frame of the 
model’s coefficients. Have I mentioned that I love the broom package?

library(broom)
lm_model <- lm(cbind(room_and_board, labs, imaging) ~ age 
+ sex + ms_drg, data = df)
coefficients_df <- tidy(lm_model, conf.int = TRUE)
print(coefficients_df)

Multi-Level Data

Quite often, the research question involves data at multiple levels. In my 
own research, this typically involves commingling hospital- and patient-
level data. We must remember that not all predictor variables are equal in 
these cases and that the natural hierarchy of the data should be captured 
within the modeling effort, especially when we expect differences in varia-
tion within those levels.

Luckily, there is a flavor of regression specifically designed for these 
scenarios.

Mixed-effects models, often called hierarchical linear models or multilevel 
models, are a type of regression used to analyze data with a hierarchical or 
nested structure (or when there is natural clustering within-group levels).

Perhaps we are conducting a study related to patient cost, and we have a 
set of patient comorbidities and hospital characteristics (like teaching status, 
the urban or rural status of a hospital, or status as a level 1 trauma center) as 
predictor variables.

If we approached this problem using a mixed-effect model, we might clas-
sify the patient-level comorbidities as fixed effects while the hospital-level 
variables would be labeled as random effects. Sheesh, more terminology, 
Mike? Unfortunately, yes. Let’s define some terms (it shouldn’t be too pain-
ful). Fixed effects refer to variables that we want to estimate precisely. They 
are the specific variables that we want to estimate in our model (like the 
association between multiple sclerosis as a chronic condition and cost). In 
a fixed-effects model, we assume the effects are constant and apply to the 
entire population. Fixed effects are often the main factors we’re interested in, 
and we estimate them with great accuracy.
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On the other hand, random effects are a bit more nuanced. They represent 
sources of variability that you don’t want to estimate precisely but rather 
account for in your model. Fixed effects are “fixed” and consistent through-
out your data, while random effects are “random” sources of variation we’re 
trying to model. Mixed-effects models allow one to incorporate both types 
of effects, providing a more accurate and flexible way to analyze complex 
data. However, these random effects must be categorical (not continuous). 
Including random effects can significantly improve the fit of your model, 
especially when you have nested or clustered data. Accounting for the inher-
ent variability within levels makes the model more accurate and robust.

Tactically, the outcome of a mixed effect model produces coefficients for the 
fixed effects (as we have seen in the other models discussed in this chapter). 
However, with the random effects, the model produces separate intercepts 
for each random effect. In our cost example, we would have an intercept 
value for teaching status, urban/rural status, level 1 trauma status, etc.

Let’s look at some notation:

	 Y = + ∑ + +i iXα β γ ε

where

Y  is the response variable
α  is the global intercept
βi  is set of fixed-effect coefficients corresponding to the predictor variables

iX  �is a set of predictor variables. We use the summation symbol Σ  (sigma) 
as a shorthand to summarize the predictor variables iX  weighted by 
their corresponding coefficients βi . This keeps us from enumerating 
each predictor variable through the verbose subscripts.

γ  �represents a set of random effects. These can be thought of as intercepts 
specific to a higher-level grouping or cluster (e.g., hospital or physi-
cian-level characteristics).

The main difference between this notation and an OLS or Gaussian GLM is 
the inclusion of a set of random effects γ .

Now that we have provided some background on mixed effect models and 
presented the statistical notation, let’s examine an example implementation 
in Python.

Again, we use the cost model discussed above for demonstration purposes.

Python

import numpy as np
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
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data = pd.DataFrame({
    'cost': [120, 130, 110, 140, 150, 130, 125, 135, 145, 
155],
    'age': [45, 38, 52, 61, 33, 44, 56, 39, 50, 60],
    'sex': [1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
    'arthritis': [1, 0, 0, 1, 0, 1, 0, 1, 1, 0],
    'ms': [0, 0, 1, 0, 1, 0, 0, 1, 0, 1],
    'kidney_disease': [1, 0, 0, 1, 0, 1, 0, 1, 0, 0],
    'diabetes': [0, 1, 0, 1, 0, 1, 0, 1, 0, 0],
    'teaching_status': [1, 0, 0, 1, 0, 1, 0, 1, 0, 0]
})

model = smf.mixedlm("cost ~ age + sex + arthritis 
+ ms + kidney_disease + diabetes", data, 
groups=data['teaching_status'])
result = model.fit()

print(result.summary())

fixed_effects = result.fe_params
random_effects = result.random_effects

print("\nFixed Effects:")
print(fixed_effects)

print("\nRandom Effects:")
print(random_effects)

Here, we are using the mixedlm method from statsmodels. Notice the 
designation of teaching status as a random effect using the group argument.

R
In R, lme4 is a well-supported package for mixed models:

library(lme4)

data <- data.frame(
  cost = c(120, 130, 110, 140, 150, 130, 125, 135, 145, 
155),
  age = c(45, 38, 52, 61, 33, 44, 56, 39, 50, 60),
  sex = c(1, 0, 1, 0, 1, 0, 1, 0, 1, 0),
  arthritis = c(1, 0, 0, 1, 0, 1, 0, 1, 1, 0),
  ms = c(0, 0, 1, 0, 1, 0, 0, 1, 0, 1),
  kidney_disease = c(1, 0, 0, 1, 0, 1, 0, 1, 0, 0),
  diabetes = c(0, 1, 0, 1, 0, 1, 0, 1, 0, 0),
  teaching_status = c(1, 0, 0, 1, 0, 1, 0, 1, 0, 0)
)

model <- lmer(cost ~ age + sex + arthritis + ms + kidney_
disease + diabetes + (1 | teaching_status), data = data)
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summary(model)

fixed_effects <- fixef(model)
print("\nFixed Effects:")
print(fixed_effects)

random_effects <- ranef(model)
print("\nRandom Effects:")
print(random_effects)

Using lme4, we indicate a random effect using the syntax (1 | 
teaching_status).

In both implementations, we extract the fixed and random effects from the 
result object; however, it is important to understand that random effects are 
used to account for variability at the group level and do not provide direct 
statistical measures such as confidence intervals, standard errors, or p-val-
ues, which are available for fixed effects (e.g., age, sex).

Zero-Inflated Response

In 2021, we collaborated with a local university on a problem related to 
ICD-10 coding intensity. If you read Chapter 2, you might remember this 
topic. There’s no judgment if you skipped it. It was admittedly a fairly dry 
chapter.

In short, coding intensity refers to the thoroughness of coding ICD-10 codes 
using information from electronic health records. In one of those studies, we 
evaluated coding intensity by counting ICD-10 procedures as our response 
variable, conditioning on a patient, and hospital characteristics as predictor 
variables. Not all patients have a procedure conducted while in the hospi-
tal, so if we plot the distribution of patient procedure counts, we see a large 
proportion of zeros alongside another distribution (Poisson in this case). The 
distributional assumptions of regression were violated—even with the flex-
ibility of a GLM. Figure 6.5 is an example of what a zero-inflated distribution 
might look like.

How do we model an outcome with two distinct groups within the 
response variable? Mike, at this point, shouldn’t we consider gradient-
boosted trees? Hold your horses, cowboy. It’s time to talk about zero-
inflated models.

Zero-inflated models are designed to specifically address this type of data 
using two components: a binary process and a counting process. The binary 
process is the part of the model that deals with whether a data point is zero. It 
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represents whether the event will happen or not. In our procedure example, 
it captures the probability of a procedure occurring. Once we’ve determined 
if the event will likely happen, the count process models the expected count 
of that response (e.g., the number of procedures). This part typically follows 
a distribution like Poisson or negative binomial, given that zero inflation 
typically occurs with count data.

Let’s look at some notation.

	 ( )λY ~ ZIP , p

where

Y represents the observed count data, typically following a Poisson 
distribution.

ZIP represents the zero-inflated Poisson (ZIP) model.
λ (lambda) is the parameter for the Poisson distribution. It represents the 

mean count when the count is not zero-inflated.
p indicates the probability that the observed count is zero due to an addi-

tional process other than the Poisson distribution.

FIGURE 6.5
Example of a zero-inflated Poisson distribution
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We’re cheating a bit here with the notation by abstracting away some of the 
statistical minutiae. The important part to communicate here is that two 
components are in play in a zero-inflated model—the probability of a zero 
and the parameter for the non-inflated distribution.

To demonstrate a ZIP model in Python using the response variable “num-
ber of procedures” and the predictor variables “age”, “sex”, and “MS-DRG”, 
we can again use the statsmodels library. Here’s an example:

import pandas as pd
import statsmodels.api as sm
import statsmodels.discrete.count_model as zip

data = {
    'Age': [45, 60, 50, 65, 55, 70, 65, 40, 70, 60, 45, 
60, 50, 65, 55, 70, 65, 40, 70, 60],
    'Female':     [1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 
0, 1, 1, 0, 1, 1, 1],
    'Diabetic':   [0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 
1, 0, 1, 1, 0, 0, 1],
    'Procedures': [0, 5, 0, 2, 0, 0, 1, 0, 0, 4, 0, 6, 0, 
3, 0, 0, 2, 0, 0, 0]
}

df = pd.DataFrame(data)
Y = df['Procedures']
X = df[["Age", "Female", "Diabetic"]]

model = zip.ZeroInflatedPoisson(Y, X, inflation='logit', 
exog_infl=X)
results = model.fit()

print(results.summary())

In this example, we call ZeroInflatedPoisson from statsmodels. 
The inflation=’logit’ argument states that we want to use logis-
tic regression to estimate the probability of a procedure before the Poisson 
model. The exog_infl=X argument states that we want to use the same 
predictors in the logistic model as in the subsequent Poisson model.

The results.summary() call provides information on the model’s coef-
ficients, standard errors, and other statistical details. Notice the two sets of 
coefficients for the two model stages (logistic and Poisson).

Similarly, we can use the pscl package in R to implement a ZIP model:

library(pscl)
data <- data.frame(
  Age = c(45, 60, 50, 65, 55, 70, 65, 40, 70, 60, 45, 60, 
50, 65, 55, 70, 65, 40, 70, 60),
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  Female = c(1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 
1, 0, 1, 1, 1),
  Diabetic = c(0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 
0, 1, 1, 0, 0, 1),
  Procedures = c(0, 5, 0, 2, 0, 0, 1, 0, 0, 4, 0, 6, 0, 
3, 0, 0, 2, 0, 0, 0)
)
zip_model <- zeroinfl(Procedures ~ Age + Female + 
Diabetic, data = data, dist = "poisson")

summary(zip_model)

Interpreting the coefficients of a ZIP model is similar to interpreting coef-
ficients in other regression models. Still, there are some unique considerations 
due to the two parts of the ZIP model: one part models the probability of 
observing a zero (the excess zeros, often modeled with logistic regression), and 
the other part models the count distribution (usually a Poisson distribution).

For each predictor variable in the logistic regression part, the coefficients rep-
resent the change in log odds of observing a zero count for a one-unit change in 
that predictor variable. A positive coefficient indicates an increase in the odds 
of observing a zero, while a negative coefficient indicates a decrease.

In the Poisson regression component, the coefficients for each predictor 
variable represent the change in the log of the expected count for a one-unit 
change in that predictor variable.

An exponentiated coefficient represents the multiplicative change in the 
expected count for a one-unit change in the predictor variable.

Other Data Scenarios

In my experience, the modeling strategies above address some of the most 
common data scenarios, especially when modeling an outcome against a set 
of patient characteristics. However, it is also important to mention a few less 
common scenarios (although they may be more common for your specific 
work). This section aims to inform the reader (you) that these models exist so 
that they can be pursued further in their own research if appropriate.

Response is Ordinal

A few years ago, I was part of a research team collaborating with a local 
university to provide some interpretability on how the CMS Overall Star 
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Hospital Ratings are associated with each measure used in the program. At 
the time, the CMS program used some opaque techniques (latent variable 
models and hierarchical clustering) to determine a hospital’s star rating—an 
ordinal value ranging from 1 to 5. We aimed to provide more transparency 
by regressing the star rating (the response) directly on the hospital-level mea-
sure results (the predictors). The problem here is that ordinal variables are 
not always linear—that is, we cannot assume that the leap in performance 
from 1 star to another is the same despite the stars being ordered values.

Ordinal regression is a statistical analysis used when your response vari-
able is ordered. In ordinal regression, the goal is to predict the likelihood of 
an observation falling into a particular category or a category below or above 
it based on one or more predictor variables. The key idea is to model the 
cumulative probabilities of the categories.

Python

Here’s a code snippet of the model using OrderedLogit from statsmodels.

model = smf.OrderedLogit(endog=data[star_rating'], 
exog=sm.add_constant(data['measure_value'])).fit()
print(model.summary)

R
And in R, we can use polr function in the MASS library:

library(MASS)
model <- polr(star_rating ~ measure_value, data = data)
Display the summary of the model
summary(model)

Interpreting the coefficients of an ordinal regression model requires some 
specific considerations for the ordinal nature of the response variable. The 
intercept represents the log odds of the cumulative probability of being in 
or below a particular category (usually the first) when all predictor variables 
are zero. This is the baseline category. For each predictor variable, a set of 
coefficients is produced for each category (excluding the last category). These 
coefficients indicate how a one-unit change in that predictor variable is asso-
ciated with the log odds of being in a particular category compared to the 
previous category.

In ordinal regression, cut points or thresholds separate the different catego-
ries. These cut points determine the range of values for which the predicted 
probabilities correspond to a specific category. To make the interpretation 
more intuitive, the coefficients can again be exponentiated to yield odds 
ratios. An odds ratio represents the multiplicative change in the odds of 
moving to a higher category for a one-unit change in the predictor variable.
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Outcome Is Dependent on Exposure 
or Observation Time

There are occasions when the outcome we’re modeling depends on some 
baseline exposure or observation time. Representative examples can be seen 
with many healthcare-acquired infections (HAIs). HAIs have varying culture 
periods; therefore, the longer the exposure to certain conditions, the more 
likely an HAI is to occur.

Central line-associated bloodstream infections (CLABSIs), for example, are 
among the more common HAI examples. The risk of a bloodstream infection 
increases the longer the patient has a central line. As such, we should con-
sider central line days as the “device days” specific to CLABSI. The number 
of days is the exposure or observation time we expect to increase the risk of 
a CLABSI.

In this hypothetical example, we might be evaluating facility-level HAI 
counts and want to understand if teaching hospitals are associated with 
higher incidences of HAIs. We could think of the outcome as the number 

of HAI incidences over the total device days 
hai count
exposure

 (an incidence rate) 

while conditioning on an indicator for hospital teaching status. Modeling 
ratios directly is problematic because a zero in the numerator will result in a 
loss of information contained in our exposure. That is, we would be unable 
to distinguish 0 HAIs out of 100 days from 0 HAIs out of 1 day.

A rate regression can be used with a Poisson distribution in these scenar-
ios, since count data is more common in these instances.

Python

To implement a Poisson rate regression in Python, in this case, we can specify 
the exposure time (e.g., central line days) as an offset variable in our standard 
GLM modeling. An excerpt of this implementation in Python can be seen as 
follows (using statsmodels):

offset = np.log(df[exposure])
model = sm.GLM(y, X, offset=offset, family=sm.families.
Poisson())
print(model)

R
In R, we can use base glm function:

model <- glm(y ~ age + sex + ms_drg, family = poisson(), 
data = df, offset = log(exposure))
summary(model)
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Expressed in notation, the applied model above takes the following form:

	 ( ) ( )1 1log hai _ count teaching log exposure= + + +α β ε

Wait, Mike. That’s not a rate you’re modeling! Although it might not seem like 
it, we are using some tricky math with logarithms to model the outcome as 

a rate (i.e., 
hai count
exposure

). Let’s break it down a bit. With some simple algebra, 

we can move the exposure variable to the left-hand side of the equation as 
follows:

	 ( ) ( ) 1 1log hai count log exposure teaching− = + +_ α β ε

If you recall from your beginner statistics class, subtraction in log form is 
equivalent to division, so we can express the same equation as follows:

	
α β ε

 
= + + 

 
1 1l

hai
og teaching

e
t

x r
_c
osu

oun
p e

Voila! The offset is what allows us to calculate the incidence rate, hence the 
name “Poisson rate regression”.

Handling Complex Interaction between Predictors

Interactions between predictors occur when one predictor has a conditional 
relationship on one or more other predictors. This can be problematic in 
regression, as our assumption of predictor independence is violated, leading 
to potentially misleading model coefficients.

If the set of predictor variables is manageable, we can create interaction terms 
for those predictors. For example, the risk of adverse events as a patient ages will 
differ by sex. Therefore, we might want to consider an interaction term between 
sex and age to inform the model of the relationship between age and sex.

When working with large sets of predictors with complex interactions, we 
end up in a bit of a pickle. Perhaps we’re evaluating a broad set of comor-
bidities as predictor variables for a specific health outcome. It is very likely 
that some of those comorbidities, when present together, increase the risk of 
the outcome in a more complex manner (e.g., a complex causal system com-
prised of multiple related variables).

In this scenario, there are few great options with regression models (in 
my opinion), and it is worth exploring models that are structurally better 
suited for these scenarios. Tree-based , and methods like Structural Equation 
Modeling (SEM), models are helpful in these cases as they are conditional 



154� Practical Healthcare Statistics with Examples in Python and R

by nature; however, those methods are outside the scope of this book. Like 
regression, it is important to start with simple models (a simple decision tree) 
with the greatest level of interpretability and work toward more sophisti-
cated approaches as needed. We might then employ a random forest model 
and ultimately delve into the world of gradient-boosted trees, if necessitated 
by the data. There are methods that provide some interpretability with these 
models when the data circumstances require it. For example, one may evalu-
ate the SHapley Additive exPlanation (SHAP) values of an XGBoost model 
as an analog to odds ratios produced from a regression model. SHAP values 
are a powerful and interpretable tool for understanding the importance and 
contribution of individual features in machine learning models. They pro-
vide a way to explain the output of a model by attributing the prediction for 
a specific instance to each of its features.

Conclusion

There are many other modeling techniques that I’ve excluded in this chapter. 
For example, we have not touched on best subsets, piecewise regression, robust 
regression, weighted least squares, nonlinear regression, and a whole host of 
techniques that are not regression-based. Consider this section as the starter 
pack for regression analysis. This guide is designed for the beginner, and so as 
the reader becomes comfortable with these techniques, there are many great 
resources that provide more depth and breadth. I’ve listed some of my favorite 
resources at the end of this chapter for those interested in continuing further.

On the other hand, you may not ever want to hear the word regression 
again, and that’s okay, too! Either way, the techniques discussed in this chap-
ter will allow beginners to address the majority of everyday data problems. 
In my own work, it is uncommon for me to employ methods beyond those 
listed here—although it does happen from time to time.

If you’re ready to throw in the towel, hang in there a bit longer. You’ve 
made it through the most challenging chapter. It is downhill from here!

Additional Resources

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). Introduction to Statistical 
Learning. Springer. Available online: ​https://​www.​statlearning.​com

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction (2nd ed.). Springer. Available online: 
 ​https://​hastie.​su.​domains/​ElemStatLearn/

https://www.statlearning.com
https://hastie.su.domains/ElemStatLearn/
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7
Measures of Disease Frequency 
and Association

This chapter covers two methods typically used to quantify disease fre-
quency and association. While these topics are common across many health-
care disciplines, they are especially common in the field of epidemiology. 
There are many ways we might express the frequency of a disease and its 
association with specific exposures, and each method has advantages and 
disadvantages. Healthcare literature is often riddled with flowery, domain-
specific language that can turn off many readers (despite the simplicity of 
many of the techniques being employed). Therefore, a secondary objective of 
this chapter is to explain these techniques from a layperson’s perspective. A 
quick guide for some of the more common calculations is also included for 
easy reference (Table 7.1).

TABLE 7.1

Common Measures of Disease Frequency and Association

Term Description Calculation Recommended Usage

Incidence 
Proportion

Proportion of new 
cases within

Incidence Proportion
Number of new cases

Population at risk
=

Captures the proportion of 
individuals who develop 
a condition within a 
specific population during 
a particular time frame.

Incidence 
Rate

Rate of occurrence 
of new cases

Incidence Rate
Number of new cases

Person timeat risk
=

Useful in comparing 
disease occurrences 
among populations with 
different follow-up times 
or exposure durations.

Prevalence Proportion of 
existing cases in 
a population

Prevalence
Number of existing cases

Population at risk
=

Indicates the total number 
of individuals affected 
by a disease or condition 
within a population at a 
specific point or over a 
period.

(Continued)

http://dx.doi.org/10.1201/9781003609759-7
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While the examples provided in this chapter demonstrate how the associa-
tion between exposure and disease can be measured, I will stress that these 
methods have a broad utility beyond disease/exposure associations.

It will be helpful to define some terminology before we proceed with this 
chapter.

I’ve mentioned the term “exposure” several times already. Exposure 
in epidemiology refers to contact or interaction with some factor that 
could affect a person's health or lead to a particular disease or condition. 
“Exposure” might include elements such as infectious agents, chemicals, 
environmental factors, behaviors, or even genetic predispositions that 
might increase the risk of developing a particular disease or condition.

Term Description Calculation Recommended Usage

Risk Ratio Ratio of the 
probability of an 
event

=

Risk in exposed group
 exposed cases

all exposed

=

Risk in unexposed group
unexposed cases

all unexposed

=

Risk Ratio
Risk in exposed group

Risk in unexposed group

Compares the probability 
of a disease in an 
exposed group to that 
in an unexposed group, 
indicating the strength 
of association between 
exposure and disease.

Risk 
Difference

Absolute 
difference in 
risks between 
groups

Risk Difference = Risk in 
exposed group − Risk in 
unexposed group

Measures the absolute 
difference in the 
probability of an disease 
between exposed and 
unexposed groups.

Odds Ratio Odds of an 
event occurring 
in the exposed 
group 
relative to the 
unexposed 
group

=

Odds of event in 
exposed group

Exposed Cases
Exposed Noncases

=

Odds of event in 
unexposed group

Unexposed Cases
Unexposed Noncases

=

Odds Ratio
Odds of event in 
exposed group
Odds of event in 
unexposed group

Quantifies the odds of an 
event happening in an 
exposed group relative to 
the odds in an unexposed 
group, commonly used 
in case-control studies or 
logistic regression.

TABLE 7.1  (CONTINUED)
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Measures of Disease Frequency

We’ll begin this section by way of example. Let’s say we’re interested 
in understanding if bariatric surgery (weight loss surgery involving the 
stomach or intestines) is associated with osteoporosis (a disease result-
ing in decreased bone density). We might speculate that bariatric sur-
gery may result in a nutritional deficiency and, therefore, decrease bone 
density. Table 7.2 has a mock study population of 3,500 individuals. 
We can refer to the 3,500 individuals as the population at risk—the num-
ber of people at risk for osteoporosis. Of this sample, five people had 
bariatric surgery and were diagnosed with osteoporosis, 40 had bariat-
ric surgery and were not diagnosed with osteoporosis, 35 did not have 

The terms cases and controls will also be used throughout this chap-
ter. In epidemiology, cases refer to individuals with a particular disease 
or condition of interest. These individuals are the focus of the study as 
they already possess the health issue being studied. On the other hand, 
controls are individuals who do not have the disease or condition being 
investigated but are similar in various aspects to the cases. They serve as 
a comparison group, allowing researchers to analyze and compare fac-
tors such as exposures, behaviors, or other characteristics between the 
cases and controls.

Another important phrase is the population at risk, which refers to indi-
viduals susceptible to a particular disease, health condition, or event 
within a defined timeframe. It includes individuals who have not yet 
developed the condition but are at risk of doing so based on various fac-
tors such as age, gender, genetic predisposition, environmental, or life-
style choices.

I’ll also use the term rate and proportion regularly throughout this chap-
ter. As a refresher, a proportion is a measure that represents a part of 
a whole, typically expressed as a fraction or percentage. It signifies the 
size or frequency of a subgroup within a larger group—for instance, the 
proportion of people in Union County, NC, with an active COVID-19 
infection.

A rate assesses the frequency or occurrence of an event within a spe-
cific timeframe, often considering the population size or a standard unit 
of measurement. It's used to quantify changes or occurrences over time, 
such as the rate of catheter-associated bloodstream infections (CLABSIs) 
per catheter day. Rates provide information about events relative to the 
population size or a specified unit.
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bariatric surgery and were diagnosed with osteoporosis, and 3,420 did 
not have bariatric surgery and did not develop osteoporosis. All cases of 
osteoporosis were diagnosed within the study period (2023).

Incidence versus Prevalence

The term incidence (also referred to as risk) quantifies the new cases of a dis-
ease. In our dataset in Table 7.2, there are 40 incidence of osteoporosis. In 
this example, the incidence proportion of osteoporosis cases is calculated as the 
number of new cases over the population at risk:

	
= = =

new cases of osteoporosis 40
incidence proportion 0 0114

population at risk 3 500
.

,

An alternative way to express incidence is through a rate, whereby the 
denominator is represented by person-years (the total number of years of 
life) rather than the number of people.

	
=

new cases of osteoporosis
incidence rate

person yearsat risk

Incidence values can be quite small (especially with rare diseases), so we often 
multiply them by a constant for better interpretation. In the incidence propor-
tion example, 0.0114 x 1,000 would tell us that osteoporosis occurs in roughly 
11.4 cases per 1,000 people (assuming a representative population sample).

Calculating incidences Python and R is one step beyond writing “Hello 
World”. Here, we show the incidence proportion of osteoporosis cases for all 
individuals in our study:

Python

new_cases = 40
persons_at_risk = 3500
incidence = new_cases/persons_at_risk
print("Incidence Proportion:", incidence)

TABLE 7.2

An Example of a 2 × 2 Contingency Table

Exposure
New Cases 

(Osteoporosis)
Controls (No 
Osteoporosis) Total

Had bariatric surgery 5 40 45
Did not have bariatric 
surgery

35 3,420 3,455

Total 40 3,460 3,500
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R

new_cases <- 40
persons_at_risk <- 3500
incidence <- new_cases / persons_at_risk
print(paste("Incidence Proportion:", incidence))

Prevalence, another measure of disease frequency, refers to the proportion 
of disease cases in a population at a given point in time. It differs from inci-
dence in that it does not require the cases to be newly identified within the 
study period. In the osteoporosis example, prevalence would include all 
active cases, including those identified during the study period and those 
existing before the study period.

The code is easy-peasy. Perhaps nine people had osteoporosis before the 
beginning of our study period. In this case, there would be nine existing 
cases and 40 new cases, totaling 49 cases of osteoporosis:

Python

existing_cases = 49
total_population = 3500
prevalence = (existing_cases / total_population) * 100
print("Prevalence:", prevalence, "%")

R

existing_cases <- 49
total_population <- 3500
prevalence <- (existing_cases / total_population) * 100
print(paste("Prevalence:", prevalence, "%"))

Prevalence is measured as a proportion (e.g., the proportion of people with 
diabetes among the total population), which provides a snapshot of how 
widespread a condition is at a particular moment. It's a static measure that 
estimates the disease or condition's burden within the population.

A common analogy to distinguish incidence and prevalence involves a 
bathtub with a dripping faucet (Figure 7.1).

In the bathtub analogy, the capacity of the bathtub represents the popula-
tion at risk, and the water in the tub represents the proportion of the popula-
tion with the disease at a given time. An individual may recover from the 
disease (the evaporation of the water in this analogy) or expire (a leak from 
the bottom of the tub). New cases in the population at risk are identified 
through the drops from the dripping faucet.

While new cases of the disease (incidence) increase prevalence, death and 
recovery decrease prevalence. As a result, we can see that prevalence is con-
stantly fluctuating. We might even say that prevalence is a fluid measure. I’ll 
see myself out.
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Measures of Association

Measures of association allow us to quantify the relationship between an 
exposure (e.g., bariatric surgery) and a disease (osteoporosis). These are sim-
ple but incredibly powerful tools that I personally use quite often in everyday 
healthcare analyses. In this section, we’ll cover three important techniques: 
(1) Odds Ratios, (2) Risk Ratios, and (3) Risk Difference. While these are simi-
lar methods, they each have distinct advantages and disadvantages.

Before we begin, let’s review the fine print: These methods will not provide 
causal information. While the two factors might be associated, we cannot say 
that one is necessarily the cause of the other (there is a burgeoning field of 

FIGURE 7.1
A bathtub analogy illustrating the relationship between incidence, prevalence, recovery, mortal-
ity, and population at risk.
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statistics designed to identify causal relationships). These methods provide 
important directional information that may support the need to conduct fur-
ther research using more robust methods (such as causal analysis).

As a further disclaimer, the motivating example used in this chapter 
assumes that there are no confounding variables (this is not often the case in 
real-world analysis). The chapter on regression methods discusses control-
ling for confounding variables. We also assume that our data is a representa-
tive sample of the population and, therefore, is not biased by the selection of 
participants. Finally, the examples are provided simply to demonstrate the 
techniques and not to share any real-world clinical findings.

Risk Ratios

We’ll start with the concept of a risk—which is simply the proportion of the 
event in a group. We could refer to this as a crude probability of an event. The 
risk of osteoporosis for patients having bariatric surgery is as follows:

	
= = =

cases exposed 5
risk exposed 0 111

all exposed 45
.

Similarly, the risk of osteoporosis for patients who did not undergo bariatric 
surgery is calculated as follows:

	
= = =

cases unexposed 35
risk unexposed 0 010

all unexposed 3 455
.

,

Therefore, the risk ratio (also called relative risk) is the ratio of the probability 
of an event occurring in an exposed group to the probability in an unex-
posed group. It measures the strength of the association between exposure 
and disease.

Again, in the context of our osteoporosis example, the risk ratio is calculated 
by dividing the risk in the unexposed group from the risk in the exposed 
group:

	
= = ÷

risk exposed cases exposed cases unexposed
risk ratio

risk unexposed all exposed all unexposed

	
= = ÷

0 111 5 35
11 1

0 010 45 3 455
.

.
. ,

The interpretation of a risk ratio is simple. A risk ratio greater than 1 indicates 
that exposure is associated with an increased disease risk. In contrast, a risk 
ratio of less than 1 means that the exposure is associated with a decreased 
disease risk (a protective effect). Risk ratios of 1 or near 1 indicate that the 
exposure is not associated with the risk of the disease.
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A risk ratio of 11.1 means that individuals having bariatric surgery have 
over 11 times the risk of developing osteoporosis compared to individuals 
not having bariatric surgery (assuming that the individuals are alike in every 
other way).

We can write this code with our eyes closed.

Python

exposed_cases = 5
exposed_noncases = 40
unexposed_cases = 35
unexposed_noncases = 3455

RR = (exposed_cases / (exposed_cases + exposed_
noncases)) / (unexposed_cases / (unexposed_cases + 
unexposed_noncases))
print("Relative Risk (RR):", RR)

R

exposed_cases <- 5
exposed_noncases <- 40
unexposed_cases <- 35
unexposed_noncases <- 3455

RR <- (exposed_cases / (exposed_cases + exposed_
noncases)) / (unexposed_cases / (unexposed_cases + 
unexposed_noncases))
print(paste("Relative Risk (RR):", RR))

Note that we can also evaluate a ratio of rates (rather than proportions) to 
form a risk rate ratio. The interpretation of a risk rate ratio is the same as a 
risk ratio in that we are measuring the increased rate of an event in one group 
relative to another.

Odds Ratios

Just as we defined risk before discussing risk ratios, we must define odds 
before discussing odds ratios. Odds are defined as a ratio of the number of 
cases to non-cases and represent the likelihood of an event happening. In 
the osteoporosis example, the odds of osteoporosis would be calculated as 
follows:

	
= =cases 40

odds of osteoporosis
non cases 3 460,
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We could also calculate the odds of osteoporosis for individuals with bariat-

ric surgery =5
0 125

40
.  or the odds of osteoporosis for individuals not having 

bariatric surgery =35
0 010

3 420
.

,
.

Odds ratios are designed to evaluate the odds of exposure among cases 
compared to controls, helping to measure the strength of association. We 
don’t need a detective to figure out that the odds ratio is simply a ratio of 
the odds of an event occurring in one group to the odds of it happening in 
another group.

	
=

odds of osteoporosis for bariatric surgery patients
odds ratio

odds of osteoporosis for non bariatric surgery patients

The interpretation of an odds ratio is similar to that of a risk ratio. Odds 
ratios greater than 1 indicate that exposure is associated with higher odds of 
acquiring the disease, while odds ratios less than 1 indicate that exposure is 
associated with lower odds of acquiring the disease. Odds ratios of 1 or near 
1 indicate no association between exposure and disease.

In this mock example, the odds of having osteoporosis are 12.21 times 
higher for individuals having bariatric surgery compared to those not having 
bariatric surgery. In other words, individuals having bariatric surgery were 
12.21 times more likely to develop osteoporosis compared to those without 
surgery (assuming all other characteristics are the same).

	
= ÷5 35

12 21
40 3 420

.
,

The Python implementation is a piece of cake:

exposed_cases = 5
exposed_non_cases = 40

unexposed_cases = 35
unexposed_non_cases = 3420

OR = (exposed_cases * unexposed_non_cases) / (exposed_
non_cases * unexposed_cases)
print("Odds Ratio (OR):", OR)

As is with R:

exposed_cases <- 5
exposed_non_cases <- 40
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unexposed_cases <- 35
unexposed_non_cases <- 3420

OR <- (exposed_cases * unexposed_non_cases) / (exposed_
non_cases * unexposed_cases)
print(paste("Odds Ratio (OR):", OR))

Note that it is common to see an alternative odds ratio calculation written 
as follows (which is mathematically equivalent to the previous formula):

	

×
=

×
exposed cases unexposed non cases

odds ratio
exposed non cases unexposed cases

	

×=
×

5 3 420
12 21

40 35
,

.

If you’re still struggling with the difference between odds and risk ratios, 
Figure 7.2 has been provided to help visualize the difference between an 
odds ratio and risk ratio using a set of 19 individuals. I’ll credit Josh Starmer 
from StatQuest (one of my favorite statistics educators), whose book inspired 
these visualizations. Triple bam!

FIGURE 7.2
A comparison between risk ratio and odds ratio calculations.
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Risk Difference

Risk difference is a measure of absolute effect. The difference in risk between 
exposed and unexposed groups represents the proportion of cases attribut-
able to the exposure. The risk difference is therefore calculated by subtracting 
the risk in the unexposed group from the risk in the exposed group:

	 = −risk difference risk exposed risk unexposed

In the context of our osteoporosis example, the risk for the exposed popula-
tion is the proportion of individuals having bariatric surgery who developed 
osteoporosis, and the risk for the unexposed population is the proportion of 
individuals who did not have bariatric surgery who developed osteoporosis.

	
= − = −5 35

11 5 12 5 1 0
40 3 455

. % . % . %
,

The 11.5% risk difference between the bariatric surgery group and the non-
bariatric surgery group demonstrates that the bariatric surgery group is asso-
ciated with an increased risk of osteoporosis by 11.5 percentage points.

Relative risk represents the absolute change in the probability of an event 
occurring due to an exposure or an intervention. While risk ratios and risk 
difference are a necessary component in understanding the impact of expo-
sures or interventions, they focus on different aspects of the relationship 
between exposure and disease. Risk difference measures the absolute change 
in risk, while risk ratios quantify the ratio of risks between groups.

Choosing between Relative Risk and Odds Ratios

Odds and risk ratios are quite similar, and each has advantages and disad-
vantages. The choice between them often depends on the characteristics of 
the study and the data itself. I personally prefer to use odds ratios when 
doing regression analysis with a binary response (e.g., a disease or outcome). 
Oftentimes, I like to show the unadjusted odds ratio for some person char-
acteristic alongside an adjusted odds ratio, to show how the ratio changes 
when controlling for other confounding variables.

For example, we might construct a table of predictors in a logistic regression 
model estimating osteoporosis as the response with multiple confounders. 
Recall that we can exponentiate the coefficients in a logistic regression to obtain 
an odds ratio (controlling for other confounding variables in the model). We 
can show an unadjusted odds ratio alongside the adjusted odds ratio from the 
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logistic regression (Table 7.3). The compatibility of the odds ratio with logistic 
regression is why I prefer using them for binary regression analyses.

However, one drawback to odds ratios is that they are a bit harder to inter-
pret. When speaking with a clinical stakeholder, I feel the more intuitive 
metric is the risk ratio (this is ultimately a matter of personal preference). 
Providing that the analysis is not part of a larger regression analysis, I prefer 
to use risk ratios.

There is a much more nuanced debate about when to use odds ratios and 
risk ratios, and additional resources are provided at the end of this chapter 
for more information. Of course, it is always helpful to provide multiple sta-
tistics to provide a more complete picture of the data scenario. For example, 
we might include the raw count data, risk difference, and risk ratio in our 
analyses to show the magnitude of the difference (using the risk difference) 
and the strength of the association (through the risk ratio). Remember, there 
is no singular value that will tell the whole story.

Statistical Significance

Okay Mike, I’ve calculated an odds ratio of 1.56 in my analysis. Is there an associa-
tion between my exposure and outcome? Good question.

Just as there was a sampling error when comparing means or proportions 
in the chapter on hypothesis testing, odds ratios and risk ratios have simi-
lar characteristics. That is, evaluating an odds or risk ratio on its own will 
ultimately require a subjective interpretation from the stakeholder. We don’t 
want that, of course, so we can use hypothesis testing again!

To evaluate the statistical significance of such associations we can formu-
late our hypothesis as follows:

Null Hypothesis:

There exposure is not associated with the disease (i.e., OR = 1)

Alternate Hypothesis:

There exposure is associated with the disease (i.e., OR ≠ 1)

TABLE 7.3

Example Analysis Output Comparing Unadjusted and Adjusted Odds Ratios

Unadjusted Adjusted

OR OR 95% CI p-value OR OR 95% CI p-value

Bariatric Surgery 12.21 7.59–9.33 .0610 8.46 7.59–9.33 .00319
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As you might notice, we are conducting a two-sided test—testing for dif-
ferences in either direction—however, left and right-tailed tests can also be 
calculated depending on the research question.

There are a variety of methods to determine the statistical significance of 
association; however, we’ll focus on the Wald test.

Let’s talk about these methods in more detail.

Wald Method

In the chapter on regression methods, we discussed the calculation of odds 
ratios from a logistic regression by exponentiating the coefficient (i.e., the logg 
odds). Recall also that we conducted a significance test on these coefficients 
to determine if the slope was 0. This approach, called the Wald method, is 
often used to estimate confidence intervals and test the statistical significance 
of parameters, including odds and risk ratios. The method involves dividing 
the estimated coefficient (e.g., odds ratio or risk ratio) by its standard error to 
obtain a z-score. This z-score is then compared to the standard normal distri-
bution to determine statistical significance. This test is best applied when the 
sample size is large enough to approximate a normal distribution accurately. 
Therefore, caution should be exercised when the sample size is small.

We can conveniently use the GLM framework to calculate an odds ratio 
and test its significance against some predetermined confidence level (e.g., 
95%). The example below essentially regresses the disease on the exposure to 
obtain a regression coefficient. Using this method, we can extract the p-value 
for the exposure coefficient to determine if the association is significant at our 
desired significance level.

Python

import pandas as pd
import numpy as np
import statsmodels.api as sm

data = pd.DataFrame({
    'exposure': [0, 1, 0, 1, 1, 0, 0, 0],
    'disease': [0, 1, 0, 1, 0, 0, 1, 0]
})

data['intercept'] = 1

X = data[['intercept', 'exposure']]
y = data['disease']

model = sm.Logit(y, X)
result = model.fit()

odds_ratio = np.exp(result.params['exposure'])
wald_p_value = result.pvalues['exposure']

print(f"Odds Ratio: {odds_ratio}")
print(f"Wald Test P-value: {wald_p_value}")
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R

data <- data.frame(
  exposure = c(0, 1, 0, 1, 1, 0, 0, 0),
  disease = c(0, 1, 0, 1, 0, 0, 1, 0)
)

model <- glm(disease ~ exposure, data = data, family = 
binomial)

odds_ratio <- exp(coef(model)['exposure'])
wald_p_value <- summary(model)$coefficients['exposure', 
'Pr(>|z|)']

cat(sprintf("Odds Ratio: %.4f\n", odds_ratio))
cat(sprintf("Wald Test P-value: %.4f\n", wald_p_value))

Confidence Intervals

Just as we can calculate confidence intervals for means and proportions, we 
can also calculate confidence intervals for odds ratios and risk ratios. The 
structure of the confidence interval is the same as those discussed in Chapter 
4; however, how we define the standard error is unique to the measure of 
association. Since odds ratios and risk ratios cannot be below zero but can 
be any number greater than zero, the distributions for these measures are 
skewed right. Luckily, however, the distributions are log-normal, and so with 
a log transformation, we can assume that they follow a normal (or Gaussian) 
distribution. This type of transformation gives us the flexibility to use more 
direct and interpretable methods.

Confidence Intervals for Risk Ratios

We’ll start with risk ratios. Recall that the critical z value and the standard 
error form the margin of error that is added and subtracted from the value 
of interest to form the confidence interval. Again, we are using the log of the 
risk ratio so the confidence intervals will also be on the log scale.

	 ( ) ( )= ± ×lower upper 2CI CI relative risk a /, ln z s.e.

The standard error formula is below. In short, this formula estimates the 
standard deviation of the natural logarithm of the risk ratio. It quantifies the 
uncertainty or variability in the risk ratio estimate due to the sample data.

	

− −
= +exposed unexposed

exposed unexposed unexposed

1 1

exposed

ˆ ˆ
ˆ ˆ

p p
s.e.

n p n p
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The standard error formula uses the proportion of cases for the exposed and 
unexposed groups, respectively.

	
=

+
exposed

exposed cases
exposed cases exposed noncases

p̂

	
=

+
unexposed

unexposed cases
unexposed cases unexposed noncases

p̂

In the context of the bariatric surgery and osteoporosis example, we can 
demonstrate the calculations:

	

−−
= = +

355 11
3 455451422 5 35

45 3 455
45 3 455

,s.e. .
,

,

	 ( ) = ± ×2 1283 2 686 2 407 1 96 1422. , . . . .

Since we’re working with logs, the natural log of 11.1 is 2.407, resulting in a 
margin of error of .2787 (or 1.96 × .1442). We use a critical z value of 1.96 for 
a 95% confidence interval.

The upper and lower confidence intervals must be exponentiated as fol-
lows to return them to their original scale:

	
( ) ( )= 2 1283 2 6868 401 14 673 . .. , . e , e

With this information, we state that we are 95% confident that the true risk 
ratio is between 8.401 and 14.673.

In Python, we can compute the confidence interval as follows:

import numpy as np

ln_risk_ratio = 0.779  # Natural logarithm of the 
risk_ratio
z_critical = 1.96
confidence interval

p_hat_1 = 0.3
n_1 = 200
p_hat_2 = 0.2
n_2 = 200

se_ln_rr = np.sqrt((1 - p_hat_1) / (n_1 * p_hat_1) +  
(1 - p_hat_2) / (n_2 * p_hat_2))

ci_low = ln_risk_ratio + z_critical * se_ln_rr * -1
ci_upp = ln_risk_ratio + z_critical * se_ln_rr

print(f"95% CI for ln(Relative Risk): ({ci_low:.3f}, 
{ci_upp:.3f})")
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Similarly, in R:

ln_risk_ratio <- 0.779  # Natural logarithm of the risk 
ratio
z_critical <- 1.96

p_hat_1 <- 0.3
n_1 <- 200
p_hat_2 <- 0.2
n_2 <- 200

se_ln_rr <- sqrt((1 - p_hat_1) / (n_1 * p_hat_1) + (1 - 
p_hat_2) / (n_2 * p_hat_2))

ci_low <- ln_risk_ratio - z_critical * se_ln_rr
ci_upp <- ln_risk_ratio + z_critical * se_ln_rr

cat(sprintf("95%% CI for ln(Relative Risk): (%.3f, 
%.3f)\n", ci_low, ci_upp))

Confidence Intervals for Odds Ratios

For odds ratios, the approach is similar. Again, we use the log of the odds 
ratios and add the margin of error on both sides of the log odds ratio.

	 ( ) ( )= ± ×lower upper 2odds ratio a /CI ,CI ln z s.e.

We can approximate the standard error for the odds ratio using the raw val-
ues from each quadrant of our 2 × 2 contingency table, with a-d being read 
left to right and top to bottom.

	
= + + +1 1 1 1

s.e.
a b c d

A worked example using the bariatric surgery and osteoporosis example is 
as follows:

	
= = + + +1 1 1 1

0 289
5 40 35 3 420

s.e. .
,

	 ( ) = ± ×1 945 3 058 2 502 1 96 0 289. , . . . .

With 2.502 as the natural log of the odds ratio of 12.21, we can calculate a 
margin of error of .2787 (or 1.96 × .1442) for a 95% confidence interval.

Again, the upper and lower confidence intervals must be exponentiated as 
follows to return them to their original scale:

	
( ) ( )= 1 945 3 0586 994 21 285 . .. , . e , e
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With this information, we state that we are 95% confident that the true odds 
ratio is between 6.994 and 21.285.

The Python implementation looks like this:

import numpy as np

a = 5
b = 40
c = 35
d = 3420

odds_ratio = (a * d) / (b * c)

z_critical = 1.96  # For a 95% confidence interval

se_ln_or = np.sqrt(1 / a + 1 / b + 1 / c + 1 / d)

ln_odds_ratio = np.log(odds_ratio)

ci_low = ln_odds_ratio + z_critical * se_ln_or * -1
ci_upp = ln_odds_ratio + z_critical * se_ln_or

print(f"95% CI for ln(Odds Ratio): ({ci_low:.3f}, 
{ci_upp:.3f})")

The R implementation looks like this:

a <- 5
b <- 40
c <- 35
d <- 3420

odds_ratio <- (a * d) / (b * c)

z_critical <- 1.96  # For a 95% confidence interval

se_ln_or <- sqrt(1 / a + 1 / b + 1 / c + 1 / d)

ln_odds_ratio <- log(odds_ratio)

ci_low <- ln_odds_ratio - z_critical * se_ln_or
ci_upp <- ln_odds_ratio + z_critical * se_ln_or

cat(sprintf("95%% CI for ln(Odds Ratio): (%.3f, %.3f)\n", 
ci_low, ci_upp))

Effect Modification

We are making a bold assumption with our odds ratio and risk ratio calcula-
tion in that we are assuming that the association (e.g., bariatric surgery and 
osteoporosis) is consistent across person characteristics such as age, sex, and 
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social circumstances. Of course, we can attempt to control for these factors 
through regression analyses (as discussed in the previous chapter); however, 
we might be interested in surfacing how the association changes for a specific 
factor (or level). The term for an association changing based on stratification 
or grouping by a specific variable, such as age, is called “effect modification” 
or “interaction”. Effect modification occurs when the magnitude or direction 
of an association between an exposure and a disease (measured by the odds 
ratio, risk ratio, etc.) differs across different levels or strata.

It means that the relationship between the exposure and the disease is not 
consistent across all subgroups, and that the effect of the exposure may be 
modified by the stratifying variable (e.g., age, gender, or other factors).

Perhaps we want to know if the association between bariatric surgery and 
osteoporosis differs between individuals 18–65 and those 65 and older. To 
support these analyses, we’ve stratified the 2 × 2 table from the beginning of 
this chapter into two age groups (18–64 and 65+) in Table 7.4.

Breslow-Day Test

In the previous section, we introduced effect modification, where the strength 
of association between an exposure and outcome differs across levels of a 
third variable, such as age. To formally test whether these differences in 
association are statistically meaningful, we can use the Breslow-Day test for 
homogeneity of odds ratios.

The code below demonstrates how to test for effect modification using the 
statsmodels package in Python. We compare two age groups (18–65 and 65+) 
and assess whether the odds ratios for an exposure–outcome relationship 
(e.g., bariatric surgery and osteoporosis) are consistent across these strata.

import numpy as np
from statsmodels.stats.contingency_tables import 
StratifiedTable

table_age_18_65 = np.array([[3, 16], [14, 1368]])
table_age_65_plus = np.array([[2, 24], [21, 2052]])

TABLE 7.4

Contingency Table Stratified by Age to Test for Effect Modification

Exposure Had bariatric surgery Did not have bariatric surgery

Stratum
New Cases 

(Osteoporosis)
Controls (No 
Osteoporosis)

New Cases 
(Osteoporosis)

Controls (No 
Osteoporosis)

Age 65+ 3 16 14 1,368
Age 18–64 2 24 21 2,052
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ctable = np.array([table_age_18_65, table_age_65_plus])

st = StratifiedTable(ctable)

test_result = st.test_equal_odds()

print("Breslow-Day Test for Homogeneity of Odds Ratios:")
print(f"Test Statistic: {test_result.statistic:.4f}")
print(f"P-value: {test_result.pvalue:.4f}")

Similarly in R, we can use the BreslowDayTest function in the DescTools 
library.

library(DescTools)

counts <- c(3,16,14,1368,  2,24,21,2052)

ctable <- array(counts, dim = c(2,2,2),
           dimnames = list(
            Exposure = c("Yes", "No"),
            Outcome = c("Case", "Control"),
            Stratum = c("18_65", "65_plus")
           ))

BreslowDayTest(ctable)

The Breslow-Day test for homogeneity of odds ratios evaluates whether 
the relationship between an exposure and an outcome differs across strata, 
such as different age groups. A p-value less than 0.05 indicates significant 
effect modification, meaning the odds ratios for the exposure-outcome 
association are different across the strata. This suggests that the expo-
sure has a varying impact depending on the subgroup (e.g., age group). 
Conversely, a p-value greater than 0.05 implies no significant difference in 
odds ratios across strata. The test statistic quantifies the magnitude of dif-
ference between the odds ratios, with a higher value reflecting a greater 
disparity between the groups.

Conclusion

Congratulations! You’ve made it to the end of this chapter and now (hope-
fully) have a better grasp on how to quantify disease frequency and its asso-
ciation with an exposure variable. Additionally, my hope is that the reader 
is better equipped with the domain-specific terminology used to discuss dis-
ease frequency and association.



174� Practical Healthcare Statistics with Examples in Python and R

Like many disciplines, we’ve only scratched the surface on this topic, 
and there is considerable depth in each of the topics discussed. Additional 
resources have been provided at the end of this chapter, along with a quick 
reference guide for many of the calculations discussed above.

As mentioned in the preface, I personally prefer simple methods when 
possible, and odds and risk ratios are fantastic tools for communicating with 
business and clinical stakeholders. Oftentimes, the results from these meth-
ods lead to more robust analyses, whereby additional confounding variables 
are considered to ensure the preliminary findings using odds ratios or risk 
ratios are corroborated by more robust methods.

In the next chapter, we will dig into the concept of risk standardization, a 
set of statistical tools that can pair nicely with the methods discussed in this 
chapter and others within this book

Additional Resources

Szklo, M., & Nieto, F. J. (2018). Epidemiology: Beyond the Basics (4th ed.). Jones & Bartlett 
Learning.

Lash, T. L., VanderWeele, T. J., Haneuse, S., & Rothman, K. J. (2021). Modern 
Epidemiology (4th ed.). LWW.

I will say that while the methods discussed in this chapter are often 
applied to some exposure and a resulting disease (or outcome), they are 
also incredibly useful in other aspects of healthcare analysis. For exam-
ple, a few years ago, I was part of a team researching how we might make 
an informed decision on how to attribute physicians to patients, with the 
goal of identifying physicians who are most responsible for patient care 
during their inpatient stay (remember this discussion in chapter 2?). In 
this research, we used an odds ratio to identify the strength of association 
between the patient’s MS-DRG (or disease group) and the physician’s 
specialty to identify the physicians providing care most associated with 
the patient’s principal diagnosis. We’ve also used measures of associa-
tion to identify the complications that should be attributed to physicians 
based on their specialty. Furthermore, we’ve used odds ratios to identify 
resources that are relevant to certain physician’s specialties (e.g., knee 
transplants are associated with orthopedic surgeons). As is the case with 
all methods discussed in this book, the reader is encouraged to consider 
the broader utility of these methods beyond the specific examples pro-
vided here.
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8
Standardization

The story you are about to hear is based on actual events; however, the names and 
data have been changed to protect the innocent. <queue the dramatic background 
music>

The adult death rate in Elder County, FL, is 0.0297, or approximately 29.7 
deaths out of every 1,000 people. Now, this is a concerning number, espe-
cially given that the national death rate of all U.S. residents is .0166, or 
approximately 16.6 out of every 1,000 people. How can this be? Perhaps there 
was a rare, localized outbreak of some mysterious virus? Maybe it was a 
severe hurricane that struck the area? Perhaps there was a chemical leak that 
infected the water supply? Whatever it was, it was catastrophic, causing a 
death rate nearly double that of the national population. Something is wrong 
here, and we, as health researchers, must crack the case.

Sarah, the new Public Health intern, is tasked with unraveling this mys-
tery. As she begins to dig into the data, she observes that there is no sud-
den spike in mortality occurring at some seminal event. In fact, the mortality 
rates are relatively stable each year. Nothing in the data appears to be out of 
the ordinary. Hours later, crunching code into the night hours in her cubical, 
she has an epiphany: The people of Elder County, FL, are old—really old. She 
shares a table with the percentage of residents by age group in Elder County 
compared to the national population (Table 8.1):

Given that the proportion of individuals 65+ is more than double that of 
the national population and the proportion of individuals 18–25 is less than 
half of the national population, it is no surprise that Elder County has a dras-
tically higher mortality rate.

The crude rate, which considers the total number of events as a proportion of 
the population within some interval, is 29.7 deaths out of every 1,000 people. 
While the crude rate is helpful within the population being studied, it is a 
fairly lousy metric to use comparatively. Populations are not homogenous, so 
a direct comparison of crude rates can often be misleading (as demonstrated 
in this example).

In this chapter, we’ll discuss standardization, a handy statistical tool that 
allows us to fairly compare groups fairly despite their differing compositions 

http://dx.doi.org/10.1201/9781003609759-8
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(within limits, of course). Specifically, we’ll discuss two types of standardiza-
tion: direct and indirect. We’ll also discuss how the latter method can be used 
to evaluate the quality and efficiency of care while accounting for the varying 
distributions of patient and hospital characteristics within those populations. 
Cliffhanger: This is my favorite topic in the entire book.

Direct Standardization

Let’s start with direct standardization. Direct standardization allows us to 
fairly compare two or more populations that differ in age distribution (or 
other characteristics of interest). To do this, we use knowledge of the broader, 
more representative, standard population (e.g., the United States) to adjust the 
event rates of interest within the narrower target population of interest (e.g., 
Elder County, FL). This adjustment aims to make fair comparisons across 
groups by creating a standardized rate or measure that eliminates (or mini-
mizes) the effect of the differing population structures.

The general concept of direct standardization is that we reweight the age-
specific rates in the target population based on the proportion of individuals 
in the standard population. In this example, the directly standardizing rates 
are achieved by weighting the age-specific crude death rate of Elder County 
by the proportion of patients in that age group within the larger U.S. popu-
lation (the “standard population”). The result is a weighted average of the 
death rates (with the weights derived from the standard population).

Let’s work through an example.
As shown in Table 8.2, the age imbalance between Elder County and the 

national population is clear. We can also see that when directly standardizing 
the mortality rate, the death rate for Elder County changes from 0.02968 (the 
crude rate) to .01513. Let’s discuss the notation to produce a directly stan-
dardized rate in conceptual terms and then work through the example to see 
how we obtained the directly standardized rate of .01513.

TABLE 8.1

Age Distribution in Elder County, FL, 
Compared to the National Population

Age Range 
Description Age Range

Elder 
County National

Young Adult 18–25 10% 24%
Adult 26–44 13% 25%
Middle Age 45–59 16% 23%
Old Age 60+ 61% 28%
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The formula to produce the directly standardized rate takes the following 
form:

	 =

 
= × ∑ 
∑

1

population sizeevent count
Directly Standardized Rate

population size population size

n ST
ii

T S
i ii

In short, this formula shows that for each age stratum i, we are weighting 
age-specific death rates within Elder County by the proportion of individu-
als within the same age stratum in the U.S. population. The weighted age-
specific rates are summed to produce the directly standardized rate. Again, 
this is simply a weighted average of the county-specific mortality rates based 
on the proportion of people in the U.S. population. We can repeat this process 
for any county to obtain comparable rates across counties.

We use the superscript T to refer to the target population (e.g., Elder 
County) and the superscript S to indicate the standard population (e.g., the 
United States). Recall also that the symbol Σ indicates that we are summing 
over all values right of the symbol. The notation ∑population sizeS

i , for 
example, shows that we are summing over the population within age stra-
tum i within the standard population S to obtain the total population size.

In the context of our Elder County example, we can express this notation 
as follows:

	
1
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If we examine the calculation where i equals “old age”, the calculations 
would be applied as follows (see Table 8.2):

TABLE 8.2

Example Calculation of Direct Standardization of Mortality Rates in Elder 
County, FL, Based on the Age Distribution of the National Population

Standard Population Target Population

Age Range 
Description

Population 
(U.S.)

Proportion
of 
Population
(U.S.)

Population 
(Elder)

Deaths 
(Elder)

Death 
Rate 
(Elder)

Proportion 

(U.S.) × Death 

Rate (Elder)

Young Adult 43,327,382 0.23941 6,524 5 0.0008 0.00106

Adult 45,660,395 0.25230 8,698 22 0.0025 0.00063

Middle Age 40,994,370 0.22652 10,148 48 0.0047 0.00106

Old age 50,992,996 0.28177 39,142 1,840 0.047 0.01324

Total 180,975,143 1 64,512 1,915 0.02968 0.01513
Directly 

Standardized 

Death Rate

(Elder)
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×Old Age Old Age

Old Age All Ages

death count in elder county US population
population in elder county US population

	
= × = ×1 840 50 992 996

0 01324309 0 047 0 28177
39 142 180 975 143

, , ,
. . .

, , ,

We can repeat this for each age group to obtain the group-specific values. The 
sum of those group-specific values produces our directly standardized death 
rate for Elder County.

Directly Standardized Death Rate for Elder County: 0.01513 = 0.00106464 + 
0.00063076 + 0.00106464 + 0.01324309

The age-adjusted, or directly standardized, mortality rate for Elder County 
is 15.1 deaths per 1,000—a considerable difference from the crude rate of 
19.7 deaths per 1,000 (not adjusting for age). Not only is the standardized 
death rate considerably lower than the crude rate that we were so alarmed 
about at the beginning of this chapter, but the adjusted rate is actually lower 
than the national rate! That is, once we account for the age distribution of 
the evaluated group, the mortality rate is lower than that of the national 
population!

Okay, Mike, enough chit-chat. Show me how to do this in code. Certainly. An 
example calculation in Python is shown as follows:

population_US = [43327382, 45660395, 40994370, 50992996]  
proportion_US = [0.23941, 0.25230, 0.22652, 0.28177]
population_Elder = [6524, 8698, 10148, 39142]
deaths_Elder = [5, 22, 48, 1840]

standard_population = sum(population_US)
adjusted_rate = 0

for i in range(len(population_Elder)):
    adjusted_rate += (deaths_Elder[i] / population_
Elder[i]) * (population_US[i] / standard_population)

directly_standardized_death_rate = adjusted_rate

print("Directly Standardized Death Rate for Elder 
County:", directly_standardized_death_rate)

Nothing magical is happening in this code, and we are not relying on any 
specific Python libraries. It’s worth mentioning that generally, when we see 
the summation symbol Σ in notation, it means that some iteration is needed 
in the code. In the Python code above, we iterate by looping over each age 
group i using a simple for loop. Note also that the += operator is shorthand to 
indicate that the value on the right-hand side should be added to the existing 
value stored within the variable on the left-hand side.
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Staying true to the vectorized nature of the R, we can implement directly 
standardized rates in R:

population_US <- c(43327382, 45660395, 40994370, 
50992996)
proportion_US <- c(0.23941, 0.25230, 0.22652, 0.28177)
population_Elder <- c(6524, 8698, 10148, 39142)
deaths_Elder <- c(5, 22, 48, 1840)

standard_population <- sum(population_US)

adjusted_rate <- sum((deaths_Elder / population_Elder) * 
(population_US / standard_population))

cat("Directly Standardized Death Rate for Elder County:", 
adjusted_rate, "\n")

Indirect Standardization

Of all the techniques in this book, I would venture to say that I use indirect 
standardization the most often. It is an incredibly versatile tool that can be 
applied to a wide range of healthcare research problems. While it is most 
often used to fairly compare health outcomes and disease frequency across 
groups with differing populations, like direct standardization, it can be used 
to standardize any metric, especially when the distribution of characteristics 
for the observations in the analysis can affect our expectation of an event 
or outcome. Perhaps we are interested in knowing if PPE supplies within a 
hospital are more or less than expected given the unique characteristics of the 
hospital and its patient mix (e.g., teaching hospital, urban/rural status, case 
mix index). We might be interested in knowing if the incidence of readmis-
sions is more or less than expected, given the clinical and demographic char-
acteristics of the evaluated patient population. An example in my research 
is the evaluation of ICD coding intensity and specificity, where our research 
team used indirect standardization to determine if hospitals were sufficiently 
recording diagnosis and procedure codes at the appropriate breadth and 
depth (while controlling for patient and hospital characteristics). Indirect 
standardization allows the researcher to control for various factors in a popu-
lation to improve fairness in comparing event frequency.

How is this different from direct standardization, Mike? In direct standardiza-
tion, we adjusted the group rates based on the proportion of individuals 
within the standard population within an age stratum—that is, we are adjust-
ing the group rate to be comparable with the rate of the standard population. 
Indirect standardization, on the other hand, compares the actual observed 
events (e.g., deaths) with an expectation of the event that is adjusted based 
on our knowledge of the standard population.



180� Practical Healthcare Statistics with Examples in Python and R

Typically, with this method, the indirectly standardized values are 
expressed as a ratio of what actually happened (the observed events) to what 
we would have expected to happen, given what we know about the stan-
dard population (the expected events). An indirectly standardized ratio can 
be expressed as follows:

	
= =

what actually happened
indirectly standardized ratio

what we expected to happen

T

T

O
E

An O/E ratio greater than 1 indicates that the number of observed events is 
higher than what we would expect of the target population. Conversely, an 
O/E less than 1 denotes fewer cases than expected, given the composition of 
the target population. In the context of mortality or care complications, the 
O/E ratio is sometimes called the SMR, which stands for “standard mortality 
ratio” or “standard morbidity ratio”.

Some researchers prefer to convert the indirectly standardized ratio to a 
risk-standardized rate, a more interpretable metric. To obtain a risk-stan-
dardized rate, we must know the crude rate of the standard population.

	
= event count
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S

S

In our working example, the crude reference rate would be the national 
death rate. The indirectly standardized rate can be obtained by multiplying 
the O/E times the crude reference rate.

	

Indirectly standardized rate for 

the target population crude reference rate
T

T

O
E

= ×

I like to think of this as using the O/E ratio to adjust the crude rate, where 
an O/E greater than 1 adjusts up the crude rate up, and an O/E less than 1 
adjusts down the crude rate. The result is the standardized rate that can be 
compared across groups or target populations.

The indirectly standardized rate is analogous to a directly standardized 
rate; however, indirect standardization provides greater flexibility. We can 
evaluate the aggregated observed events relative to the expected events in 
their raw form, as a ratio, or as a difference. Others will argue that direct 
standardization is a more direct and interpretable approach and will prefer 
this approach over indirect standardization (Table 8.3).

An example will prove helpful here. Using the data from Elder County 
(target population) once again and our knowledge of U.S. (standard popula-
tion) death rates, we can produce an expected number of deaths for each age 
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stratum. The expected deaths are calculated by multiplying the proportion 
of deaths in the U.S. population by the age-specific population within Elder 
County. In other words, we are saying, how many deaths would we expect 
from this age group in Elder County if the death rate was the same as the 
national population? Those observed deaths are subsequently used within 
a ratio of observed to expected events, such that ratio values greater than 1 
indicate more deaths than expected, while ratios less than one indicate fewer 
deaths than expected.

One benefit of this approach is that the observed and expected values can 
be summed across age groups to obtain ratios at different levels of aggrega-
tion. For example, we might sum the observed and expected deaths across 
the middle and old age groups to produce an overall ratio of observed to 
expected deaths specific to the combination of those two age groups.

The formula for indirect standardization would take the following form:

	 =

 
= = × ∑ 
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1

event count
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event count

n S
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Again, this notation shows how the proportion of deaths 
∑
event count

vent count

S
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S
ie

 in 

the standard population S for age group i is multiplied by the population of 
the population size for the target population T to obtain the expected num-
ber of events for age stratum i. We use the large sigma operator to sum over 
age-specific expected values to obtain the total expected values for the target 
population. Total observed events are simply the summation of events for 
the target population T across age strata i.

TABLE 8.3

An Example of Direct Standardization of Elder County Mortality 
Rates

Age Range 
Description Age Range

Standard 
Population Target Population

Death Rate 
(U.S.)

Population 
(Elder)

Observed 
Deaths 
(Elder)

Expected 
Deaths 
(Elder)

Young 
Adult

18–25 0.00087 6,524 5 6

Adult 26–44 0.00251 8,698 21 22
Middle Age 45–59 0.00483 10,148 47 49
Old Age 60+ 0.052 39,142 1,839 2,035
Total 64,512 1,912 2,112
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The result is the indirectly standardized ratio for the target population 
T

T

O
E

, 

which can again be converted to an indirectly standardized rate by multiply-
ing the O/E by the crude reference rate:

	
= ×Indirectly standardized rate crude reference rate

T

T
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Or, in the context of our Elder County example, the calculation would be as 
follows:

Elder

Elder

1 912
Indirectly standardized ratio for the target population 0 905

2 112
,

.
,

O
E

= =

=

The national death rate in our dataset is = 3 004 187
0 0166

180 975 143
, ,

.
, ,

 (or 16.6 deaths 

per 1,000), which allows us to obtain an indirectly standardized rate for Elder 
County as follows:

	
= = ×1 912

Indirectly standardized rate for the Elder County 0 015 016
2 112
,

. .
,

O/E ratios can be informative, allowing comparability across groups 
regardless of magnitude. For example, an O/E ratio of 2 might computed 
from a ratio of 2,000/1,000 or 20,000/10,000. One drawback with ratios, 
however, is that they can mask important information contained in the 
expected value, especially when 0 events occur. Imagine counties A and 
B have 0 deaths; however, through indirect standardization, county A’s 
O/E ratio is 0/10, and county B’s is 0/1,000. While counties A and B 
have an O/E of 0 using this method, county B’s mortality is arguably 
significantly lower than expected. Several strategies can be employed 
to mitigate this issue (e.g., shrinkage estimators), although these meth-
ods are more advanced and are outside of the scope of this book.
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But Mike, this method only controls for a single variable like age, right? What if I 
want to control for multiple factors? Great question. Indirect standardization can 
be implemented in various ways to control for multiple variables. Perhaps 
we wanted to control for a person’s age and sex to produce a more precise 
expected value (since death rates by age differ by sex). Intuitively, the most 
direct way to control for multiple characteristics would be to create more 
specific strata. We would have a female and male stratum for each age group, 
doubling the strata used to produce the expected values. This is perfectly 
acceptable; however, we quickly encounter the curse of dimensionality as we 
add additional control variables. Imagine adding other population character-
istics, such as income and health insurance coverage. Each additional control 
variable exponentially increases the number of strata, with each stratum rep-
resenting a narrower population subset. As you might imagine, this approach 
becomes problematic when conducting robust analyses where the research 
question requires controlling for a wide range of personal characteristics.

A more elegant alternative is to use regression or other predictive models to 
produce an expected value for each observation (or person) in our analysis. 
Using this approach, we would regress the event (as the response variable) 
on a set of person characteristics (predictors) to obtain an expected event. 
Rather than using strata from the standard population to produce a (crude) 
expectation of risk, the regression approach would allow us to generalize 
the data in the standard population through a fitted model. In our mortality 
example, we would regress the binary indicator of mortality on a broad set of 
person characteristics to obtain the probability of mortality. This probability 
may serve as the expected value for a given individual. We can then sum 
over all the probabilities produced through the regression model to obtain 
the total expected events for the target population.

The formula for our logistic regression might look like this:
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Recall that logistic regression is a GLM that models the log odds of an out-
come through its linear combination of predictors. To obtain the probability, 
we use the sigmoid function as the inverse link function to produce the prob-
ability of an event.
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This probability p will serve as an expected value in the context of standard-
ization of a binary outcome.
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When using regression modeling for indirect standardization, the model 
is typically fit using the data of the standard population and applied to the 
target population. In this way, the expected values from the model represent 
what we would expect of the larger general population, providing the same 
distribution of characteristics of the target population.

Table 8.4 includes 25 mock high-risk individuals with an indicator of death 
(observed) and a probability of death (expected). The expected value results 
from applying a logistic regression model (fit based on the standard popula-
tion) to the target population.

As shown in Table 8.4, we can sum over the observed and expected values 
to obtain an indirectly standardized ratio:

	
= = =9
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TABLE 8.4

Sample Observed and Expected Values Aggregated 
to Produce a Ratio of Observed to Expected Events

Person Observed Expected

1 1 0.4200
2 0 0.0008
3 0 0.0430
4 0 0.2700
5 0 0.0001
6 1 0.8500
7 0 0.0000
8 1 0.8499
9 1 0.8006
10 0 0.3679
11 1 0.8506
12 0 0.1772
13 1 0.7498
14 0 0.3527
15 0 0.5160
16 0 0.3652
17 0 0.1042
18 1 0.8970
19 0 0.1240
20 0 0.0001
21 0 0.7839
22 0 0.3860
23 1 0.7907
24 1 0.8987
25 0 0.3450
Total 9 10.9433
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Expected values for other events (e.g., income) can also be calculated using 
the appropriate statistical model. For income estimation, we might choose a 
zero-inflated model (some individuals are unemployed) or a Poisson regres-
sion. Expected values are simply the best estimate of the event based on the 
patient characters used in the model.

In population studies, we often do not have the data at the individual level 
to indirectly standardize the data in this way, but when it is available, the 
method comes with many benefits. A person-level expected value (while 
often not reliable on its own) can be aggregated to different levels to form 
indirectly standardized ratios at different. Perhaps we want to know if Elder 
County, FL, has a higher standardized death rate than Millennial County, 
CA. A person-level model will allow us to adjust for the many person-level 
factors that cause those populations to differ to obtain a comparable mortal-
ity rate. We could further aggregate to lower levels of aggregation such as 
census tract.

Indirectly standardizing the data further allows mortality rates to be mea-
sured over time simply by grouping the evaluated population into temporal 
units (day, week, month, etc.).

Let’s look at a reproducible example in Python. As shown below, there are 
two steps for indirect standardization: (1) fitting a model based on the stan-
dard population and (2) applying the fitted model to a target population to 
produce the expected values. The observed and expected values from the tar-
get population are summed to form the observed to expected, or O/E, ratio.

import numpy as np
import pandas as pd
import statsmodels.api as sm

np.random.seed(42)
n = 1000

age = np.random.randint(18, 90, n)
sex = np.random.choice(['Male', 'Female'], n)
ms_drg = np.random.choice(['DRG1', 'DRG2', 'DRG3'], n)
mortality = np.random.choice([0, 1], n)

standard_data = pd.DataFrame({'Age': age, 'Sex': sex, 
'MS-DRG': ms_drg, 'Mortality': mortality})

print(standard_data)

standard_X = pd.get_dummies(standard_data[['Age', 'Sex', 
'MS-DRG']], drop_first=True, dtype=int)
standard_y = standard_data['Mortality']

standard_X = sm.add_constant(standard_X)

logit_model = sm.Logit(standard_y, standard_X)
standard_model = logit_model.fit()
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target_n = 200
target_data = pd.DataFrame({
    'Age': np.random.randint(18, 90, target_n),
    'Sex': np.random.choice(['Male', 'Female'], 
target_n),
    'MS-DRG': np.random.choice(['DRG1', 'DRG2', 'DRG3'], 
target_n)
})

target_X = pd.get_dummies(target_data[['Age', 'Sex', 
'MS-DRG']], drop_first=True, dtype=int)
target_X = sm.add_constant(target_X)

predicted_prob = standard_model.predict(target_X)

target_data['Mortality'] = np.random.choice([0, 1], 
target_n)

expected_events = predicted_prob.sum()

observed_events = target_data['Mortality'].sum()
observed_to_expected_ratio = observed_events / 
expected_events

print(f"Observed events: {observed_events}")
print(f"Expected events: {expected_events}")
print(f"Observed to Expected Ratio: 
{observed_to_expected_ratio}")

Similarly in R, there are two steps—fitting the model and applying the 
model to produce the expected values—the sum of which serve as the 
denominator of our risk adjusted ratio.

set.seed(42)

n <- 1000

age <- sample(18:89, n, replace = TRUE)
sex <- sample(c('Male', 'Female'), n, replace = TRUE)
ms_drg <- sample(c('DRG1', 'DRG2', 'DRG3'), n, replace = 
TRUE)
mortality <- sample(c(0, 1), n, replace = TRUE)

standard_data <- data.frame(Age = age, Sex = sex, MS_DRG 
= ms_drg, Mortality = mortality)

print(standard_data)

standard_data$Sex <- as.factor(standard_data$Sex)
standard_data$MS_DRG <- as.factor(standard_data$MS_DRG)

logit_model <- glm(Mortality ~ Age + Sex + MS_DRG, data = 
standard_data, family = binomial)
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target_n <- 200
target_data <- data.frame(
  Age = sample(18:89, target_n, replace = TRUE),
  Sex = sample(c('Male', 'Female'), target_n, replace = 
TRUE),
  MS_DRG = sample(c('DRG1', 'DRG2', 'DRG3'), target_n, 
replace = TRUE),
  mortality = sample(c(0, 1), target_n, replace = TRUE)  
)

target_data$Sex <- as.factor(target_data$Sex)
target_data$MS_DRG <- as.factor(target_data$MS_DRG)

predicted_prob <- predict(logit_model, newdata = target_
data, type = "response")
expected_events <- sum(predicted_prob)

observed_events <- sum(target_data$mortality)
observed_to_expected_ratio <- observed_events / 
expected_events

cat("Observed events:", observed_events, "\n")
cat("Expected events:", expected_events, "\n")
cat("Observed to Expected Ratio:", observed_to_expected_
ratio, "\n")

Risk Adjustment

Risk adjustment is a special form of indirect standardization used to measure 
variation in quality and efficiency across care settings. With risk adjustment, 
our goal is not simply to standardize the rates but to identify opportunities 
to improve quality of care and utilization. Health plans, such as Medicare 
Advantage, also use risk models to assess patients’ health statuses and pre-
dict their healthcare needs, which helps determine fair and accurate pay-
ments to providers based on the complexity and severity of the patient 
population they serve. If you read Chapter 2 on healthcare measures (no 
judgment if you didn’t), we discussed several sets of healthcare measures 
that use risk adjustment to compare the observed outcome of care to an 
expectation given the unique clinical and demographic characteristics of the 
patient population. These measures include the AHRQ patient safety indica-
tors, NHSN healthcare-associated infections, Yale CORE outcome measures 
(e.g., mortality, readmissions, complications), and CMS Medicare Spending 
Per Beneficiary measure. Risk adjustment is the gold standard for quality 
and efficiency measurement, and any credible evaluation of quality and 
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efficiency uses some form of risk adjustment to ensure that the variation in 
care controls the patient mix.

Risk adjustment models are typically fit based on national population 
(or nationally representative) and applied to patients within some sub-
population, such as a health system, hospital, physician, or service line. The 
expected value in the context of risk adjustment is an estimate of the outcome 
if the patient received the generalized care of the standard population. If we 
observed a greater number of outcomes than expected, controlling for the 
range of patient characteristics, we make the assumption that the difference 
in observed and expected outcomes is a result of patient care.

In the risk modeling process, it is important to distinguish pre-existing 
patient conditions from those arising during hospitalization. This is a critical 
distinction, as including conditions resulting from care can mask important 
variation in patient outcomes.

Let’s look at an exaggerated example to illustrate. You’ve developed two 
risk models designed to produce an expected length of stay for a patient’s 
hospitalization. These models were fit using the National Inpatient Sample 
(NIS) dataset from Healthcare Cost and Utilization Project (HCUP) as the 
standard population. We want to use this risk model to evaluate the variation 
in length of stay on a med/surg unit at Elder Memorial, a new short-term 
care hospital in the region.

The length of stay risk models will be used to compare the total observed 
days to the total expected days in the form of an O/E, with observed 
and expected totals simply being the summation of patient days across 
all patient hospitalizations. In the case of total expected days, we simply 
sum the predicted values from of our regression model to obtain the total 
expected days.

The first risk model includes a curated set of risk factors, including patient 
age, sex, and a set of chronic conditions (e.g., cancer, diabetes, heart disease, 
stroke). Again, the standard population was used to fit this model, regressing 
the length of stay on this set of patient characteristics.

The second model, a data-driven model, incorporates a broader set of clini-
cal variables using diagnosis and procedure codes available within the stan-
dard dataset. The second model is a better fit with improved mean squared 
error and a higher r-squared value.

Not only does this second model identify a broader set of variables that 
explain variation in length of stay, the O/E values for Elder Memorial are 
much better! Why would we not use the more complete and better-fit second 
model?

You approach the chief medical officer at Elder Memorial for input on 
which model should be employed—making a compelling case for the second 
model. In reviewing the patient characteristics used in the model, she points 
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out that complications of care, such as pressure ulcers, falls, and infections, 
are included as predictors in the model. Here, we have broken the funda-
mental rule of risk adjustment in that the model should not control for the 
care received by the provider, as it can mask important variation in quality.

By including these complications of care, we would expect longer lengths 
of stay for patients experiencing complications, thereby masking a quality-
of-care problem! The favorable O/E values in the second (poorly designed) 
model essentially factors out suboptimal care by including complications of 
care as predictors.

Despite the better fit of the second model, the first model is the proper 
choice, as the increased error in the model fit exposes true care variation 
through the O/E ratio.

Risk adjustment is not about extreme optimization, but rather properly 
controlling, to the best extent possible, for the range of patient clinical and 
demographic that might affect a patient’s outcome, such that differences 
between observed and expected events exposes gaps in care.

Present on Admission (POA) Status

How do we distinguish between preexisting patient clinical conditions and 
those developing during the care process within administrative data? If you 
recall from Chapter 1, patient diagnoses are accompanied by a present-on-
admission indicator (POA) that informs us if the condition was preexisting 
or developed in the hospital. We could examine COVID-19, for example. A 
patient might present with COVID-19 upon admission, or COVID-19 may be 
hospital-acquired—that is, the patient acquired COVID-19 due to improper 
hand washing, cleanliness, etc.

When developing a risk model, it is important to narrow the risk factors 
to those present on admission. This prevents us from lowering the bar for 
suboptimal care (i.e., unduly inflating the expected value).

Race and Ethnicity

It is important to note that race and ethnicity (standard variables available 
in administrative data) as social constructs should not be used within risk 
adjustment models, as we would not want to change our expectation of an 
outcome simply due to a patient’s racial identification. Imagine if a particular 
racial group was highly associated with an adverse outcome. Controlling 
for race in our risk model would produce a higher expectation of the out-
come for that racial group, thereby masking important variation in care that 
may be informative from a health equity perspective. We should not expect a 
patient to have better or worse outcomes simply due to racial identity.
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While this is a general rule, there are rare exceptions where there is clinical 
standing for including race and ethnicity, such as the evaluation of sickle cell 
anemia in black patients. If race and ethnicity are included in a risk model, 
the measure developer should ensure rigorous clinical justification grounded 
in the scientific literature.

We are often interested in understanding inequities in care across different 
racial and ethnic groups, however, and a helpful technique is stratification, 
where the risk-adjusted results (i.e., the O/E values) are segmented across 
demographic groups. In this case, the goal is to surface potential disparities 
in care from the differing O/E ratios across strata.

Social Drivers of Health

An important topic being discussed in the healthcare literature is that of 
social drivers of health (SDoHs) and health outcomes, and naturally, there 
are conversations among experts about how to incorporate such variables 
in risk adjustment models. To help guide this conversation, an important 
distinction should be made between risk models solely designed to improve 
quality and efficiency and those that tie performance to reputation, reward, 
and reimbursement.

Let us say that your patient dataset also includes a patient-level SDoH 
index variable—a composite value comprised of income, food insecurity, 
access to transportation, disability, etc. There is uncertainty on whether this 
index should be used as a control variable in the risk model.

If the goal is to measure true quality and efficiency of care, variables related 
to SDoH should not be included. As with race and ethnicity, we do not want 
to lower the bar for a patient population serving more marginalized patients 
by controlling for SDoH. In this way, variation can be surfaced and acted upon 
by the hospital and the larger community. Again, stratification as a secondary 
step can be a valuable tool to identify quality and efficiency disparities across 
SDoH factors.

If we shift the scenario to risk models used to determine a hospital or phy-
sician’s reputation (e.g., CMS Overall Star Rating) or reimbursement (e.g., 
Hospital Value-Based Purchasing, MIPS), we must change our perspective. 
Studies have shown that hospitals serving more historically marginalized 
populations generally have worse outcomes (even when controlling for 
clinical and demographic characteristics). Hospitals serving such popula-
tions should not be penalized simply due to the populations they serve. In 
these scenarios, it is necessary to control for SDoH so that hospitals provid-
ing high-quality care to those more marginalized patient populations can 
still be recognized for high quality and avoid penalties for variation in care 
outside of their control.
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Stratification

In the indirect standardization example from the previous section, the 
patient’s disease group (AMI, heart failure, pneumonia, stroke, CABG, etc.) 
was controlled for using MS-DRG. While this might be sufficient in some 
scenarios, it is necessary to consider how the effect of the remaining patient 
characteristics on outcomes might change within the context of a disease 
group. Imagine that our risk adjustment model is evaluating the binary 
occurrence of a complication for hospital stays—a standard metric within 
healthcare quality measurement. Intuitively, a patient’s risk of a complica-
tion will increase as age increases. However, if we evaluate the association 
between age and complications across specific disease strata, we might see 
considerably different associations depending on the disease stratum evalu-
ated. The point here is that the relationship between a patient’s risk factors, 
and an outcome will vary within the context of a disease stratum—a data 
concern that cannot be resolved by simply adding a disease group variable 
in the regression model. Remember that regression models assume that each 
predictor variable (or risk factor) is independent, and including a disease 
group variable will not mitigate this issue.

As such, for some risk adjustment models, it is worth considering stratify-
ing models by disease group (i.e., fitting a separate model for each group) 
so that the unique relationship between patient factors and outcomes can be 
modeled in a more clinically appropriate manner. While the implementation 
requires separate models to be developed for each outcome, the end result 
will be a more clinically relevant risk estimation. Of course, some machine 
learning models, such as tree- and neural network-based models, will natu-
rally account for the complex interaction between variables (i.e., features) 
and are not bound to the assumptions of independence.

It should be noted that the resulting expected values can be aggregated 
across disease group strata. Even if our risk model has 500 disease strata 
(with a regression model specific to each disease stratum). The observed and 
expected values from those stratum-specific models can still be aggregated 
to form an overall observed-to-expected ratio (while adjusting for disease/
covariate interaction as stated above).

Coding Variation

Recall from Chapter 2 that measures using administrative data can be sensi-
tive to variability in coding rigor, which includes the intensity (i.e., breadth) 
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and specificity (i.e., depth of coding). Providers with more rigorous coding 
practices will identify more risk in the patient population, which can inflate 
the number of expected cases, resulting in a lower O/E value. Some measure 
developers will attempt to control for variation in coding risk through cod-
ing indices that quantify variation in coding.

Re-baselining

Risk adjustment models must be maintained (or re-fit) at routine intervals so 
that the generalized information about the standard population reflects the 
most current practices of care, distributions of patient characteristics, and the 
resulting expectation of an event. This process of refitting the risk model is 
referred to as “re-baselining” or “recalibration”. The COVID-19 pandemic is 
a prime (although extreme) example of how the distribution of patient char-
acteristics and the outcome prevalence can change over time. If the standard 
population is wildly different from the target population that we wish to 
standardize, our estimates may over or underestimate that population’s risk. 
Failure to re-baseline the risk model at regular intervals (e.g., annually) can 
lead to suboptimal risk estimations.

Another reason to rebaseline risk models developed using administrative 
data is to ensure that the fitted model incorporates the most recent coding 
standards. The ICD-10 coding system and the resulting MS-DRGs are now 
updated biannually. This means that new ICD-10 and MS-DRG codes can be 
introduced every six months, and others can be discontinued. Other coding 
systems, such as the CCSR and HCC disease grouping, are also subject to 
change. Therefore, if the risk model is fit against a standard population from 
a time period before such coding changes, the risk associated with newly-
introduced codes will go undetected in the more current target population. 
This was the case with the introduction of the COVID-19 ICD-10 code, as 
previous risk models did not have knowledge of the COVID-19 code and 
could not detect the critical risk associated with this disease.

The Importance of Peer Groups in Risk Adjustment

While risk models are an important tool for comparing variation in quality, 
efficiency, and patient complexity across entities with differing risk profiles 
(i.e., different distribution of patient characteristics), studies have shown 
that risk models can only control for differing characteristics within limits. 
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An  urban level I trauma center will have a significantly different patient 
population than a small rural hospital. Even with risk-adjusted O/E values, 
we would not want to compare the performance of the large urban hospital 
to the small rural hospital. That is, we cannot assume that the performance 
level of one hospital with its unique case mix is obtainable from another hos-
pital with a notably different case mix.

This is especially important when setting goals using risk-adjusted results. 
Healthcare entities often compare their risk-adjusted performance against 
a higher-performing peer group (e.g., the top-performing decile). Without 
considering the hospital’s structural characteristics (through peer groups or 
other methods), we might set unreasonable performance expectations.

Therefore, it is helpful to evaluate risk-adjusted results, or O/E values, 
within a group of comparable facilities. This allows healthcare entities to 
assess their risk-adjusted results in the context of a comparable set of facilities.

Statistical Significance and Confidence Intervals

Previously, we discussed how confidence intervals for means, proportions, 
odds ratios, and regression coefficients can be calculated. A risk-adjusted 
ratio (or indirectly standardized ratio) of observed to expected events will 
also have some degree of sampling error. While quantifying the degree of 
uncertainty of an O/E ratio is incredibly useful, experts debate how to best 
identify such error.

Given that this is a book designed for beginners, I’ll share one of the more 
frequently employed methods for calculating confidence intervals for risk 
standardized ratios; however, the reader should know that more advanced 
statisticians and epidemiologists will have their own justification for using 
alternative methods.

Byar's Approximation

Many methods to calculate confidence intervals for an O/E ratio will cal-
culate the error of the observed value, holding the expected value as fixed. 
This is one criticism of these methods, in that they assume that there is only 
sampling error in the distribution of observed events, ignoring the inherent 
error from the model fit of the regression model that produced the expected 
values. Setting this criticism aside for now, the confidence interval of a risk-
adjusted ratio can be expressed as follows:

	
< <

UpperLowerO O O
E E E
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The name of the method discussed in this chapter is Byar’s approxima-
tion—a technique that is easily implemented without complex iteration 
required of more precise (or “exact”) methods. Recall that binary variables 
summed to some level of aggregation (e.g., hospital, physician, service 
line) result in a count of events and that count data typically follows a 
Poisson distribution—characterized by its rightward skew (or more for-
mally, the mean is equal to the variance). Therefore, these approximation 
methods quantify error by assuming that the observed counts follow a 
Poisson distribution.

The formulas for the Byar’s approximation are given below, showing 
how the lower and upper confidence intervals are calculated. We can 
adjust the confidence level as needed through the z-value 2a /z  (e.g., ~1.96 
for a 95% CI). As discussed in Chapter 3, α refers to the significance level 
(e.g., α = .05 for a 95% confidence level). Since we are interested in the error 
on both ends of the distribution, we use α/2 to indicate that the 5% Type 
I error probability is split to each end of the distribution (i.e., .025 on each 
end).

The theoretical underpinnings of this approach are outside of the scope 
of this book. The implementation, however, is relatively simple (relative to 
other approaches) and is shown below:
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At the time of this book, there is no popularized library for calculating con-
fidence intervals for standardized ratios (including Byar’s approximation), 
so the Python code below is a conversion of an excerpt from the epi.smr 
function found in the R epiR package. epiR is a time-tested library regularly 
used for this purpose maintained by the University of Melbourne, Australia. 
I suspect these methods will soon be incorporated into statsmodels (or 
another well-supported statistical library) in Python.

import numpy as np
from scipy.stats import norm
def smr_byar_approx(obs=4, exp=3.3, conf_level=0.95):



Standardization� 195

    if isinstance(obs, list) or isinstance(exp, list):
        raise ValueError("Arguments obs and exp must be 
of length 1")

    N = 1 - ((1 - conf_level) / 2)
    z = norm.ppf(N, loc=0, scale=1)

    a = obs
    lambda_ = exp
    smr = a / lambda_

    if a % int(a) != 0:
        raise ValueError("Argument obs must be a whole 
number")

    # Byar's approximation:
    if a < lambda_:
        _a = a + 1
    else:
        _a = a

    byar_z = ((9 * _a) ** 0.5) * (1 - (1 / (9 * _a)) - 
((lambda_ / _a) ** (1 / 3)))
    byar_p = 2 * norm.cdf(byar_z, loc=0, scale=1) 
if byar_z < 0 else 2 * (1 - norm.cdf(byar_z, loc=0, 
scale=1))

    # Confidence interval - Regidor et al. (1993):
    alow = a * (1 - (1 / (9 * a)) - (z / 3) * np.sqrt(1 / 
a)) ** 3
    aupp = (a + 1) * (1 - (1 / (9 * (a + 1))) + (z / 3) * 
np.sqrt(1 / (a + 1))) ** 3

    byar_low = alow / lambda_
    byar_upp = aupp / lambda_

    rval = {
        'obs': a,
        'exp': lambda_,
        'est': smr,
        'lower': byar_low,
        'upper': byar_upp,
        'test_statistic': byar_z,
        'p_value': byar_p
    }
    return rval

In R, we have the convenience of using the epiR package:

library(epiR)
obs <- 4
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exp <- 3.3
result <- epi.smr(obs, exp, conf.level = .95) #Byar is 
the default method
print(result)

The method (shown in Python and R) produces the upper and lower confi-
dence intervals, test statistic, and p-value, as well as the calculated observed 
and expected values and resulting O/E ratio (or SMR).

We discussed these components in detail in Chapter 4. Please see the sec-
tion on Confidence Intervals if you’ve skipped that chapter (or fell asleep).

The main benefit of confidence intervals, like those used for means and 
proportions, is that with smaller samples, there is a greater degree of sam-
pling error. Byar’s approximation and comparable methods will widen the 
confidence interval with smaller samples and narrow it with larger samples.

It should be noted that Byar’s approximation is accurate even with small 
numbers; however, more precise methods are generally preferred when the 
observed event count is five or less. In these cases, a more sophisticated but 
more accurate estimation can be obtained using the mid-P exact method 
(which is outside of the scope of this book)

One question that might arise is why we can’t use one of the hypothesis 
tests in Chapter 3 to compare observed to expected events. For exam-
ple, if we know the observed and expected counts of events, can we 
not simply use a z-test or t-test to compare the two distributions and 
determine statistical significance and confidence intervals?

In short, we can use standard hypothesis testing, but it is important 
to know that we are violating some of the assumptions of the statistical 
tests. The difficulty is that the observed and expected values are Non-
IID”, which stands for "non-independent and identically distributed”. 
Let’s break this down a bit more:

Outcomes that are non-independent imply that the observations or 
data points being evaluated are not independent of each other. In an 
IID scenario, each data point is assumed to be unrelated to the oth-
ers. However, in non-independent data, the value of one observation 
might be related to or influenced by other observations. For instance, 
in time series data, each data point might depend on previous data 
points, violating the independence assumption. For our example, as it 
relates to comparing observed to expected values, this is not the driv-
ing concern.

The second “I” refers to non-identically distributed data. In an IID sce-
nario, it’s assumed that each data point comes from the same probability 



Standardization� 197

Conclusion

You’ve reached the finish line once again (unless you skipped to the end—
don’t be that person). This chapter dives deep into two critical methods for 
comparing populations and understanding healthcare outcomes: direct and 
indirect standardization.

Direct standardization helps compare populations with different age dis-
tributions. It involves adjusting rates within a specific population to make 
them comparable to a standard population. This minimizes the influence of 
differing population structures, and ensures fairer comparisons.

Indirect standardization, my favorite technique, accomplishes a similar 
goal of comparing outcomes across groups with varied populations. Unlike 
direct standardization, it compares observed events with an expectation 
adjusted based on the standard population’s knowledge. It uses ratios and 
predictive models, like logistic regression and other GLMs, to control for 
various population factors for a more accurate comparison.

We also touched on the important topic of risk adjustment in healthcare, 
which isn’t just about standardizing rates but identifying gaps in care and 
utilization.

distribution. In our example, the observed distribution is of a differ-
ent type than the expected distribution. For example, if we evaluate 
observed and expected events at the patient level, the observed events 
follow a Bernoulli distribution (yes or no), and the expected events are 
probabilities. The same is true, although less impactful, is the compari-
son of count data from an observed distribution (e.g., LOS) with that of 
a continuous expected distribution.

The foremost expert on risk adjustment modeling, Lisa Iezzoni, pro-
poses an approach (among others) to identify statistically significant 
deviations between observed and expected events using traditional 
one sample z- and t-tests despite the IID assumption being violated. A 
reference to some of Iezzoni’s work is provided at the end of this chap-
ter. I strongly recommend her excellent work to anyone serious about 
building robust risk adjustment models.

For brevity however, we’ve focused on Byar’s approximation in this 
chapter, as it does not violate IID assumptions and is often used to com-
pare indirectly standardized ratios; however, the reader is encouraged 
to explore the other methods proposed by Iezzoni and others.
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Additional Resources

Lash, T. L., VanderWeele, T. J., Haneuse, S., & Rothman, K. J. (2021). Modern 
Epidemiology (4th ed.). LWW.

Iezzoni, L. I. (2012). Risk Adjustment for Measuring Health Care Outcomes (4th ed.). 
Health Administration Press.
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9
Time-to-Event Analysis

In this chapter, we will discuss time-to-event or survival analysis where the 
outcome of interest is the time to an event (e.g., days, months, years, until 
some outcome or event occurs) given some starting point (e.g., a cancer diag-
nosis). We might be interested in the number of days until remission (the 
event) from the date of a cancer diagnosis (starting point or "time origin").  
We might also want to know if some exposure (e.g. treatment) affects the 
time until remission. While the terms time-to-event and survival analysis are 
interchangeable and refer to the same set of statistical methods, the applica-
bility of these methods reaches far beyond evaluating survival in healthcare 
analyses. These methods may be used to measure the time until readmis-
sions, complications, or onset of symptoms. They can also be used outside 
of the healthcare setting to assess customer churn, days until credit card 
default, species extinction, and related problems.

Now, you might be asking yourself: Why do we need special methods for 
these types of problems? Can we not use a regression-based approach to 
make inferences about a time to an event? Given that event times often have 
a rightward skewed distribution, we could certainly consider a GLM using 
an appropriate distribution, especially when we are interested in controlling 
for multiple confounders. In this scenario, we could just model the effect of 
some exposure (a predictor) on time (a response).

While these more traditional methods might be appropriate in some cases, 
the problem largely occurs when we have censored data in our dataset—obser-
vations for which the entire time duration is unknown within the study period.

Let's talk censoring. Figure 9.1 shows the event time from some time origin 
(e.g., a positive diagnosis of a condition) to an event (e.g., death) for a set of 
mock patients. The most common form of censoring is right censoring, which 
occurs when the event of interest (e.g. mortality) has yet to happen for a sub-
ject by the end of the study period or when they are lost to follow-up. We can 
see that the event time for some subjects extends beyond the study period, 
and as such, we lose sight of a potential incidence of an outcome (or event) 
past the study end date. These are the right censored subjects in the study. 
Loss to follow-up, a special type of right censoring, refers to subjects that 

http://dx.doi.org/10.1201/9781003609759-9
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leave the study or can no longer be tracked. Here, too, we cannot know if an 
outcome occurred due to their unknown status.

Left censoring, a less common scenario, occurs when the event of interest 
occurs before the study start date and only the duration for a subject since 
the study start date is known. Examples of left censoring can be seen in 
Figure 9.1, where a subject’s duration begins before the study period begins. 
We might know if the outcome occurred, but we do not know the entire 
duration of the event.

Interval censoring happens when an event occurs within the study period, 
but the exact event time is unknown. Perhaps a physician’s office is follow-
ing a patient through regular office visits, and an outcome occurs between 
visits. In this case, we know an event occurred within the study period, but 
we are unsure of the exact duration or event time. We only know that the 
time of an event falls between two observation time points. Interval censor-
ing, like left censoring, is a less common scenario in time-to-event studies.

As a result, methods like regression are only suitable for censored data if 
they assume complete observation of outcomes. Time-to-event methods, on 
the other hand, are designed to gracefully handle censoring even when not 
all events are observed.

Another way to visualize event time is to align the duration for each subject 
based on the origin date (e.g. a cancer diagnosis). This interpretation of time, 
called analysis time, is shown in Figure 9.2 rather than linear time, shown in 
Figure 9.1. Arranging the observations in this way provides a better picture 
of survival up to a certain point within the time duration across subjects.

FIGURE 9.1
Examples of uncensored and left and right censored subjects over time.
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When exploring time-to-event problems, analysts often rely on three key 
methods. First is the Kaplan–Meier curve, a useful visual representation of 
survival rates for one or more groups over time. The log-rank test, the sec-
ond method, is a hypothesis test designed to test for the differences between 
survival curves. We might want to know, for example, if there is a statistically 
significant difference between the survival curves between two factors (treat-
ment group A or B)—that is, do patients receiving treatment A generally sur-
vive longer than those receiving treatment B? Lastly, the Cox Proportional 
Hazards Regression, or Cox Regression, is a regression-based approach that 
helps researchers control for and quantify potential associations between 
multiple factors and survival probabilities.

The following sections will introduce these three methods; however, like 
all aspects of statistics, time-to-event analysis has many layers of depth. 
Additional resources have been provided at the end of this chapter for those 
interested in pursuing the subject further.

To keep it interesting (and I’m using the term “interesting” loosely), let’s 
use a hypothetical scenario involving a rare disease. We’ll call this disease 
Contagium-24 (or C-24).

C-24 is a rare genetic condition impacting the nervous system in adult-
hood, potentially resulting in paralysis and, in aggressive cases, mortality. 
Your research facility has been tracking survival for patients who elected 
to be vaccinated with an experimental therapeutic vaccine and those who 
have declined the vaccination. While not offering complete immunity to C24, 

FIGURE 9.2
Examples of uncensored and left and right censored subjects aligned over analysis time.
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this vaccine demonstrates the potential to considerably reduce the sever-
ity of the illness and its related symptoms. To assess its effectiveness, your 
lab has engaged in a decade-long study, monitoring patients from symp-
tom onset and documenting instances of C24-related fatalities along the 
way. Specifically, we want to know if the C24 vaccination is associated with 
increased rates of survival.

The collected patient data is shown in Table 9.1. Here, we have the event 
time in years (with the start of the event time being a positive diagnosis of 

TABLE 9.1

Includes Example Patients Diagnosed with C-25 Over a 
Ten-Year Study Period

Event Times 
(Years) Age Sex

Observed Event 
(Mortality)

Treatment 
Group

3 60 M 0 Vaccinated
3 48 F 0 Vaccinated
6 58 F 0 Vaccinated
4 74 M 1 Vaccinated
4 42 M 0 Vaccinated
3 64 M 0 Vaccinated
3 43 M 0 Vaccinated
5 26 F 0 Vaccinated
8 54 M 0 Vaccinated
8 59 M 1 Vaccinated
7 66 M 0 Vaccinated
6 55 F 1 Vaccinated
10 71 F 0 Vaccinated
4 43 F 0 Vaccinated
4 45 M 1 Vaccinated
4 46 M 1 Unvaccinated
4 35 M 1 Unvaccinated
4 34 F 0 Unvaccinated
9 54 M 1 Unvaccinated
7 45 M 0 Unvaccinated
3 60 U 1 Unvaccinated
3 69 M 0 Unvaccinated
6 41 M 1 Unvaccinated
6 74 F 1 Unvaccinated
7 46 F 0 Unvaccinated
4 85 F 1 Unvaccinated
4 60 M 1 Unvaccinated
2 66 M 1 Unvaccinated
7 67 F 1 Unvaccinated
5 73 M 1 Unvaccinated
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C-24), along with the subject’s age, sex, death indicator, and vaccination sta-
tus. In time-to-event analysis, “censored” records are those where the event 
of interest (e.g., death, failure, recovery) hasn’t occurred by the end of the 
study period or the time of data collection. Looking at the provided data, a 
“1” in the “Observed Event” column indicates an observed event (i.e., death), 
while a “0” indicates censored data, where the event has not occurred by the 
end of the study.

Now that we’ve prepared the data let’s begin our analysis. We’ll start with 
the Kaplan–Meier curve and log-rank test, complementary methods for com-
paring survival curves over time.

Kaplan–Meier Method

The Kaplan–Meier curve (Figure 9.3) is a graphical representation of survival 
or event occurrence over time. This non-parametric technique (i.e., we do not 
rely on specific assumptions about the underlying probability distributions) 
estimates the probability of an event happening at each time point, consider-
ing censored data.

FIGURE 9.3
Kaplan-Meier curves illustrating survival of patients diagnosed with C-24 over time.
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To create the dataset needed for the Kaplan–Meier curve, we must calculate 
the probability of survival at each time unit t and each treatment group A or B 
(vaccinated and unvaccinated). Table 9.2 shows event time in years for peri-
ods in which there is available data (notice there is no 1 or 2). Furthermore, 
the mortality count, censored count, population at risk, survival percentage 
(i.e., mortality percentage), and cumulative survival percentage at each time 
unit are provided. Here, we can see the value of the censored subjects, which 
would otherwise be excluded from conventional traditional statistical meth-
ods. We might not know when an event occurs for a given censored subject, 
but their presence in the data remains valuable, in that patients surviving 
past the study end date remain useful in knowing the population at risk at a 
given point in time.

Let’s look at the notation. First, we must calculate the survival percentage 
for each time. This is an iterative calculation as the population at risk is con-
ditional events in the preceding time. The calculation is as follows:

	

−
=

Population at Risk Observed Events
Survival Percentage

Population at Risk

A A
t tA

t A
t

Population-at-risk refers to the remaining population after removing cen-
sored data and observed events occurring from prior periods. The notation 
below t-1 refers to the previous time (or the previous row in Table 9.2).
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The cumulative survival percentage (or proportion) for each time t is simply 
the product of the survival percentage (or proportion) for the current time 
and the cumulative survival percentage of the previous time.

	 −

=
× 1

CumulativeSurvival Percentage Survival Percentage
Cumulative Survival Percentage

A A
t t

A
t

For example, at year 6 for the vaccinated group, the cumulative survival per-
centage is 68% (or .68)—calculated as follows:

	 0 68 82 83. . .= ×

Note that proportions are used here instead of percentages (as a better 
practice).
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TABLE 9.2

Aggregated Patient Data in the Vaccinated and Unvaccinated C-24 Groups to Support the Kaplan–Meier Curve

Vaccinated Unvaccinated

i A
tO A

tq A
tn A

tY A
tS B

tO
A
tq B

tn B
tY B

tS

Time-
to-event 
(Years)

Observed 
Events 
(Mortality 
Count) Censored

Population 
at Risk

Survival 
Percentage 
for time t

Cumulative 
Survival 
Percentage

Observed 
Events 
(Mortality 
Count) Censored

Population 
at Risk

Survival 
Percentage 
for time t

Cumulative 
Survival 
Percentage

0 0 0 15 100% 100% 1 0 15 93% 87%

3 0 4 15 100% 100% 1 1 14 93% 87%
4 2 2 11 82% 82% 4 1 12 67% 58%
5 0 1 7 100% 82% 1 0 7 86% 50%
6 1 1 6 83% 68% 2 0 6 67% 33%
7 0 1 4 100% 68% 1 2 4 75% 25%
8 1 1 3 67% 45% 0 0 1 100% 25%
9 0 0 1 100% 45% 1 0 1 0% 0%
10 0 1 1 100% 45% 0 0 0 0% 0%
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The cumulative survival probabilities in Table 9.2 are plotted to form 
the Kaplan–Meier curves for the two treatment groups (vaccinated and 
unvaccinated).

The Python lifelines library does all these tedious calculations for us to 
produce a Kaplan–Meier plot for the two treatment groups.

import pandas as pd
from lifelines import KaplanMeierFitter
from lifelines.statistics import logrank_test
from lifelines.plotting import add_at_risk_counts
import matplotlib.pyplot as plt
from lifelines.utils import survival_table_from_events

data = pd.DataFrame({
    'Event Time (Years)': [3, 3, 6, 4, 4, 3, 3, 5, 8, 8, 
7, 6, 10, 4, 4, 4, 4, 4, 9, 7, 3, 3, 6, 6, 7, 4, 4, 2, 7, 
5],
    'Age': [60, 48, 58, 74, 42, 64, 43, 26, 54, 59, 66, 
55, 71, 43, 45, 46, 35, 34, 54, 45, 60, 69, 41, 74, 46, 
85, 60, 66, 67, 73],
    'Sex': ['M', 'F', 'F', 'M', 'M', 'M', 'M', 'F', 'M', 
'M', 'M', 'F', 'F', 'F', 'M', 'M', 'M', 'F', 'M', 'M', 
'U', 'M', 'M', 'F', 'F', 'F', 'M', 'M', 'F', 'M'],
    'Observed Event (Mortality)': [0, 0, 0, 1, 0, 0, 0, 
0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 
1, 1, 1, 1],
    'Treatment': ['vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated']
})

time_column = 'Event Time (Years)'
event_column = 'Observed Event (Mortality)'

group1_data = data[data['Treatment'] == 'vaccinated']
group2_data = data[data['Treatment'] == 'unvaccinated']

kmf_control = KaplanMeierFitter()

kmf_control.fit(group1_data[time_column], event_
observed=group1_data[event_column], label='unvaccinated')
ax2 = kmf_control.plot()
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kmf_exp = KaplanMeierFitter()
kmf_exp.fit(group2_data[time_column], event_
observed=group2_data[event_column], label='vaccinated')
ax2 = kmf_exp.plot(ax=ax2)

add_at_risk_counts(kmf_exp, kmf_control, ax=ax2)
plt.tight_layout()

The dataset used in this code example contains the data in Table 9.1 and 
is then divided into two groups based on a treatment variable: “vaccinated” 
and “unvaccinated.”

For each group, the code fits the survival data using the KaplanMeierFitter 
from lifelines, specifying the time and event columns, and labels the respec-
tive plots accordingly (’vaccinated’ or ’unvaccinated’).

The resulting Kaplan–Meier plots for the two groups (vaccinated and 
unvaccinated) are generated, plotting the estimated survival probabilities 
over time. The add_at_risk_counts function adds the counts of individuals at 
risk in each group at various time points on the plots. I like seeing the data 
table below the plot, but there are many ways to customize the plot output. 
The reader is encouraged to review the lifelines documentation to tailor the 
visualization to their needs.

A similar implementation can be achieved using R using the survival 
library to fit the model, and survminer library to visualize the Kaplan–
Meier curve.

library(survival)
library(survminer)

data <- data.frame(
  Event_Time_Years = c(3, 3, 6, 4, 4, 3, 3, 5, 8, 8, 7, 
6, 10, 4, 4, 4, 4, 4, 9, 7, 3, 3, 6, 6, 7, 4, 4, 2, 7, 
5),
  Age = c(60, 48, 58, 74, 42, 64, 43, 26, 54, 59, 66, 55, 
71, 43, 45, 46, 35, 34, 54, 45, 60, 69, 41, 74, 46, 85, 
60, 66, 67, 73),
  Sex = c('M', 'F', 'F', 'M', 'M', 'M', 'M', 'F', 'M', 
'M', 'M', 'F', 'F', 'F', 'M', 'M', 'M', 'F', 'M', 'M', 
'U', 'M', 'M', 'F', 'F', 'F', 'M', 'M', 'F', 'M'),
  Observed_Event_Mortality = c(0, 0, 0, 1, 0, 0, 0, 0, 0, 
1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 
1, 1),
  Treatment = c('vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
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'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated')
)

surv_object <- Surv(data$Event_Time_Years, 
data$Observed_Event_Mortality)

km_fit <- survfit(surv_object ~ Treatment, data = data)

plot(km_fit, col = c("blue", "red"), xlab = "Time 
(Years)", ylab = "Survival Probability", main = "Kaplan-
Meier Survival Curves by Treatment")

legend("topright", legend = c("Vaccinated", 
"Unvaccinated"), col = c("blue", "red"), lty = 1)

In this R code, the Surv function creates a survival object that defines the 
time and event status. The survfit function then calculates Kaplan–Meier 
survival curves for each treatment group, using the tilde (~) to specify that 
the curves should be separate for each group.

The Kaplan–Meier curves in Figure 9.3 show that the vaccinated group 
appears to survive longer than the unvaccinated group. While this is infor-
mative as a directional tool, a hypothesis test, such as the log-rank test, will 
help conduct robust analyses.

Log-Rank Test

Log-rank tests are statistical tools for comparing survival curves between 
two or more groups. They assess whether there are significant differences in 
the survival curves (e.g., vaccinated vs. unvaccinated) or if the differences 
are likely due to chance.

First, we must set up the hypothesis for a log-rank test. Remember the 
steps for hypothesis testing from Chapter 3?

Null Hypothesis H0 : There is no difference in survival 
experiences between the vaccinated and unvaccinated groups.

Alternate Hypothesis aH : There is a difference in survival 
experiences between the vaccinated and unvaccinated groups.

Note that we are evaluating a difference in survival curves in either direc-
tion, so we are conducting a two-tailed test. We’ll need to set a significance 
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level before conducting our test, so we’ll use the traditional α = 0.05 signifi-
cance level (or 95% confidence level).

Drilling in further, the test statistic for a log-rank test is essentially a chi-
squared test designed to work with time data. The test statistic uses observed 
and expected numbers of events, whereby the sum of squared differences 
between the observed and expected events at each time is divided by the 
sum of the variance at each time point. Since the notation in this section is 
more involved, we’ll use some abbreviated field names in this section. The 
field names and their abbreviations can be found in the header of Table 9.2 
and are also redefined in the following.

We’ll apply the log-rank test for the unvaccinated group to gain insight 
into survival differences between the unvaccinated and vaccinated groups. 
The test statistic can be calculated as follows:

	 ( )χ ∑ −=
∑ −

2 log rank statistic
B B
i i

B B
i i

O E
Var O E

The test statistic follows a chi-square distribution, and therefore, we can 
obtain a p-value based on this distribution, parameterized by the degrees of 
freedom (i.e., the number of groups, such as vaccinated and unvaccinated, 
minus 1). This p-value reflects the probability of observing the obtained dif-
ferences in events between groups if there’s no true difference in survival 
(i.e., we do not reject the null hypothesis).

I’ll note that the statistical notation is a bit squirrely, but stay with me. 
A worked step-by-step example will follow in plain English.

Let’s start with the calculations for the expected counts. The expected 
event count for a given treatment group (e.g., vaccinated) and time unit t is 
calculated as the proportion of the population at risk for the treatment group 
of interest times the total observed cases across both groups. This expected 
value estimates the count of observed cases that we would expect, assuming 
no difference between the vaccinated and unvaccinated groups at time t.

For the vaccinated group, expected events for each time t can be calculated 
as follows:

	
( )= × +

+

A
tA A B

t t tA B
t t

n
E O O

n n

Likewise, for the unvaccinated group, the expected events for each time can 
be calculated as follows:

	
( )= × +

+

B
tB A B

t t tA B
t t

n
E O O

n n

The variance component helps quantify the variability between the observed 
and expected events, which in turn contributes to the overall test statistic. 
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The formula for the variance between the observed and expected values 
across a given time can be calculated as follows:

	

( ) ( ) ( )
( ) ( )=

× × + × + − −
− =

+ + −
∑ 2

0 1

A B A B A B A B
t t t t t t t tB B

t t
A B A B

t t t t t

n n O O n n O O
Var O E

n n n n

where

A
tO 	� is the number of observed events (deaths) in the vaccinated group at 

time t.
B
tO 	� is the number of observed events in the unvaccinated group at time t.
A
tE 	� is the expected number of events in the vaccinated group at time t.
B
tE 	� is the expected number of events in the unvaccinated group at time t.
A
tn 	 is the total number of patients at risk in the vaccinated group.
B
tn 	 is the total number of patients at risk in the unvaccinated group.

Now that we’ve outlined the conceptual calculations for the log-rank test, 
let’s examine a worked example using the C-24 data scenario. The calcula-
tion details are in Table 9.3.

The table lists columns for the expected events for each period and treat-
ment group. For example, the expected number of events for the unvacci-
nated group in year 4 is approximately 3.13.

	
( ) ( )= × + = × +

+ +
12

3 13 2 4
11 12

B
t A B

t tA B
t t

n
. O O

n n

The difference between the observed and expected events for each period is 
summed and squared to produce the numerator of the test statistic (see the 
column labeled “Observed – Expected” in Table 9.3).

	 = ∑ −3 637 B B
t t. O E

Finally, we calculate the time-specific variance for each period and sum those 
to obtain the overall variance result of 3.208 (see the “Variance” column in 
Table 9.3).

	 ( )= −2 23 208 Var. O E

The final log-rank test statistic therefore is 4.123:
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TABLE 9.3

Aggregated Patient Data in the Vaccinated and Unvaccinated C-24 Groups to Support the Log-Rank Test Calculation

Vaccinated Unvaccinated

i A
tO A

tq A
tn A

tE A A
t tO E− B

tO A
tq B

tn B
tE B B

t tO E− ( )–Var B B
t tO E

Time-
to-event

Observed 
Events Censored

Population 
at Risk

Expected 
Events

Observed-
Expected

Observed 
Events Censored

Population 
at Risk

Expected 
Events

Observed-
Expected Variance

0 0 0 15 0.5 –0.5 1 0 15 0.5 0.5 0.25
3 0 4 15 0.517 –0.517 1 1 14 0.482 0.517 0.250
4 2 2 11 2.870 –0.870 4 1 12 3.13 0.867 1.157
5 0 1 7 0.5 –0.5 1 0 7 0.5 0.5 0.25
6 1 1 6 1.5 –0.5 2 0 6 1.5 0.5 0.614
7 0 1 4 0.5 –0.5 1 2 4 0.5 0.5 0.25
8 1 1 3 0.75 0.25 0 0 1 0.25 –0.25 0.188
9 0 0 1 0.5 –0.5 1 0 1 0.5 0.5 0.25
10 0 1 1 0 0 0 0 0 0 0 0

3.637 3.208
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2
2 3.637

log rank statistic 4.123
3.208

χ = =

To determine statistical significance, the log-rank test statistic is compared 
against the chi-square distribution with one degree of freedom (for compar-
ing two groups). Python’s lifelines library can perform the log-rank test auto-
matically, along with p-values associated with the test statistic.

With that segue, let’s look at the Python code to conduct a log-rank test.

import pandas as pd
from lifelines import KaplanMeierFitter
from lifelines.statistics import logrank_test
from lifelines.plotting import add_at_risk_counts
import matplotlib.pyplot as plt
from lifelines.utils import survival_table_from_events

data = pd.DataFrame({
    'Event Time (Years)': [3, 3, 6, 4, 4, 3, 3, 5, 8, 8, 
7, 6, 10, 4, 4, 4, 4, 4, 9, 7, 3, 3, 6, 6, 7, 4, 4, 2, 7, 
5],
    'Age': [60, 48, 58, 74, 42, 64, 43, 26, 54, 59, 66, 
55, 71, 43, 45, 46, 35, 34, 54, 45, 60, 69, 41, 74, 46, 
85, 60, 66, 67, 73],
    'Sex': ['M', 'F', 'F', 'M', 'M', 'M', 'M', 'F', 'M', 
'M', 'M', 'F', 'F', 'F', 'M', 'M', 'M', 'F', 'M', 'M', 
'U', 'M', 'M', 'F', 'F', 'F', 'M', 'M', 'F', 'M'],
    'Observed Event (Mortality)': [0, 0, 0, 1, 0, 0, 0, 
0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 
1, 1, 1, 1],
    'Treatment': ['vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated']
})

time_column = 'Event Time (Years)'
event_column = 'Observed Event (Mortality)'

group1_data = data[data['Treatment'] == 'vaccinated']
group2_data = data[data['Treatment'] == 'unvaccinated']
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results = logrank_test(group1_data[time_column], 
group2_data[time_column],
                       group1_data[event_column], 
group2_data[event_column])
print(results.print_summary())

The core analysis happens with the logrank_test() function from the 
lifelines library. This test compares the survival experiences of the two groups 
(’vaccinated’ vs. ’unvaccinated’) based on their ’days’ (time to an event) and 
’event’ (whether the event occurred or not) columns. Specifically, the log-
rank test assesses whether there is a statistically significant difference in the 
survival distributions between the two groups.

The R code is a bit more compact as it only needs the patient-level data 
frame (not the group-level aggregations).

library(survival)

data <- data.frame(
  Event_Time_Years = c(3, 3, 6, 4, 4, 3, 3, 5, 8, 8, 7, 
6, 10, 4, 4, 4, 4, 4, 9, 7, 3, 3, 6, 6, 7, 4, 4, 2, 7, 
5),
  Age = c(60, 48, 58, 74, 42, 64, 43, 26, 54, 59, 66, 55, 
71, 43, 45, 46, 35, 34, 54, 45, 60, 69, 41, 74, 46, 85, 
60, 66, 67, 73),
  Sex = c('M', 'F', 'F', 'M', 'M', 'M', 'M', 'F', 'M', 
'M', 'M', 'F', 'F', 'F', 'M', 'M', 'M', 'F', 'M', 'M', 
'U', 'M', 'M', 'F', 'F', 'F', 'M', 'M', 'F', 'M'),
  Observed_Event_Mortality = c(0, 0, 0, 1, 0, 0, 0, 0, 0, 
1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 
1, 1),
  Treatment = c('vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated')
)

log_rank_result <- survdiff(Surv(Event_Time_Years, 
Observed_Event_Mortality) ~ Treatment, data = data)

print(log_rank_result)
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Like the Python implementation, the R code performs a log-rank test 
to compare the survival experiences of the two treatment groups. The 
Surv(Event_Time_Years, Observed_Event_Mortality) compo-
nent creates a “survival object” that includes information on the time until 
an event and whether or not the event occurred (with 1 when the event hap-
pened and 0 if it did not). The ~ Treatment component defines the treat-
ment groups for comparison. The survdiff function then conducts the 
log-rank test, which checks if there is a significant difference between the 
survival curves of the treatment groups.

The results of this code yield a chi-square test statistic of 4.12 and a p-value 
of .04. With our significance level of 0.05, we can reject the null hypothesis, 
which states that there is no difference in survival between the vaccinated 
and unvaccinated groups in favor of the alternate hypothesis, which states 
that there is a difference in survival between the vaccinated and unvacci-
nated groups.

Cox Proportional Hazards

While the log-rank test is helpful in evaluating a single variable, real-world 
research questions often involve multiple factors. The Cox proportional haz-
ards model, or Cox regression, serves this purpose in time-to-event analysis, 
especially when evaluating multiple factors. It is a tool to help measure the 
association between predictors (such as treatment and demographics) and 
the hazard of an event. At this point, you are probably annoyed that I haven’t 
defined hazards and hazard ratios, so let’s do that now.

Hazards and Hazard Ratios

A hazard refers to the probability of an event occurring within a specific 
period, given that it has not yet occurred. A higher hazard implies a greater 
probability of the event happening at any given moment. Hazards are 
dynamic and can vary over time. They might be higher or lower at different 
stages compared to the previous time unit, and reflect changes in risk associ-
ated with the event.

Hazard ratios, or the ratio of hazards, quantify the relative difference 
in hazards between groups or conditions within a study. It compares the 
instantaneous risk of an event occurring at any given time in one group 
relative to another. The Cox regression model tells us how the hazards of 
an event change with each unit increase of the predictor. For example, we 
might be interested in the hazards of the vaccinated group relative to the 
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unvaccinated group but also in controlling for factors such as age and sex. 
Cox regression will provide an adjusted hazard ratio for this treatment vari-
able while considering the effects of age and sex. Age and sex, too, will 
have an associated hazards ratio so that we can quantify how hazards might 
change (linearly) as an individual ages or how risk might differ by the indi-
vidual’s sex.

Hazard ratios are analogous to relative risk in that we evaluate risk (or 
hazards) for one group relative to another in the form of a ratio. However, 
hazards differ from relative risk in that relative risk is based on the risk 
assessed within a fixed time unit. In both cases, the ratios are interpreted 
similarly, with increased risk (or hazards) for one group relative to another 
being expressed as a ratio greater than one and decreased risk for one group 
relative to another being expressed as a ratio less than one.

Cox Regression

When conducting time-to-event analysis in the wild, we typically want 
to account for multiple risk factors (or predictors). In our C-24 example, 
it is unlikely that vaccine status is the sole factor that explains survival. 
Like most diseases, patient characteristics such as age, sex, and disease 
history are likely to contribute to the survival of those diagnosed with 
C-24. We’ve seen that the log-rank test is a helpful tool when evaluating 
the effect of a single factor (e.g., vaccine or no-vaccine, male or female); 
however, a more robust approach would be to use the power of regression 
modeling in the context of survival to provide a better estimate of one 
factor’s association with survival while controlling for other important 
explanatory variables.

Let’s continue with our C-24 example. In addition to vaccine status, 
we might want to incorporate the age and sex variables available to us in 
Table 9.1. This way, we can control for potential covariate imbalance (i.e., the 

unique patient mix) between the two treatment groups by evaluating and 
controlling for age and sex. We can better understand the vaccine’s efficacy 
by controlling for these factors. Let’s review the notation:

We can see from this notation that there are three primary components: (1) 
the hazard function ( )h t , (2) the baseline hazard function ( )0h t , and (3) the 

ℎ( ) = ℎ ( ) × ⋯

Baseline

Hazard
Hazard

Linear 

Combination 

of Predictors
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linear combination of predictors β β+1 1 2 2X Xe . The latter component should be 
familiar to those who read the chapter on regression methods.

We can also express the Cox regression model in log form by applying a 
natural log to both sides of the equation:

	
( )( ) ( )( ) β β β= × + +…+0 1 1 2 2 n nln h t ln h t X X X

We’ll start with the hazard function ( )h t , which serves as the response vari-
able. It represents the probability that an event will occur in a certain time 
interval, given that the individual has survived up until that point.

Like the regression methods discussed in Chapter 5, …1X Xn  are the 
covariates (or predictors) while β β…1 n  are the coefficients associated with 
each covariate, indicating the magnitude and direction of their impact on the 
hazard. The component expressed as β β β+ +…+1 1 2 2 n nX X Xe  shows that the lin-
ear combination of covariates is being exponentiated. Notice, however, that 
there is no intercept in this equation. In the context of a single predictor, we 
can think of this as knowing the slope of the line but not the point at which 
it intersects with the y-axis. The baseline hazard function ( )0h t anchors the 
linear combination of predictors to produce estimated hazards, in a similar 
way as an intercept.

Furthermore, the baseline hazard ( )0h t  refers to the hazard function asso-
ciated with an event of interest (such as death and failure) when all explana-
tory variables or covariates are at zero or in their reference state. It is unique 
in that the baseline hazard is a function of time t and can dynamically vary 
across different time intervals. The linear combination of predictors extends 
the baseline hazard function to account for that added risk based on the 
unique set of characteristics of the evaluated subjects.

Interpreting Model Output

The model summary of a Cox regression provides helpful information for 
interpreting how predictor variables are associated with event hazards. It 
allows us to measure how a one-unit increase in the predictor value is related 
to the log hazards of experiencing the event (e.g., death) at any given time. 
A Cox regression produces a similar coefficient summary to an OLS or GLM 
model (Table 9.4).

Since the coefficients from a Cox regression are based on the log hazards, 
we can exponentiate these values to obtain an adjusted hazard ratio. This is 
similar to exponentiating the coefficients in a logistic regression to obtain an 
adjusted odds ratio. Again, given that the model is fit based on the values of 
all covariates, the hazards ratio, in this case, is an adjusted ratio that controls 
for the effects of the remaining variables.

The Cox regression output also includes a 95% confidence interval, a 
z-score, and a p-value for each predictor in the model. You guessed it, we are 
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hypothesis testing again! In the context of Cox regression, we are interested 
in determining if there is a statistically significant association between the 
predictor (or covariate) and the hazards of an event. We can’t prove a statisti-
cally significant association, so we must state in the null hypothesis that there 
is no association (i.e., the status quo) and gather evidence to reject the null 
hypothesis in favor of the alternate hypothesis with some predetermined 
confidence level. The hypothesis statement can be expressed as follows:

Null Hypothesis 0H : The null hypothesis states that there is no 
association between the covariate and the hazard of the event occurring, 
which we can represent as

	 β =0 0H :

Alternative Hypothesis aH : There is a non-zero association between 
the covariate and the hazard of the event. It’s represented as

	 β ≠ 0aH :

Notice that the alternate hypothesis states that there is a non-zero asso-
ciation. This means that we are conducting a two-tail test, whereby the null 
hypothesis will be rejected if the p-value derived from the test statistic is 
lower than the predetermined significance level (alpha = .05 in this case).

A hazard ratio of 1 means no effect, a hazard ratio greater than 1 implies a 
higher hazard, and a hazard ratio less than 1 suggests a lower hazard compared 
to a reference level or for a unit change in a predictor. The hazard ratio indicates 
the magnitude and direction of a predictor’s association with the hazard.

Looking at Table 9.5, containing the exponentiated coefficients (or adjusted 
hazard ratios), we can see that when controlling for age and sex, vaccine 
treatment is no longer a statistically significant variable (within our predeter-
mined confidence level). If I were conducting this analysis, however, I would 
not discount these results altogether. The odds ratio of .33 indicates that 
there is a 66% lower hazard of death for vaccinated patients compared to the 

TABLE 9.4

Summary Output of the Predictor Variables from a Cox Regression

Coef (Log 
Hazard Ratio) se(coef)

coef lower 
95%

coef upper 
95% z p

Age 0.05 0.03 0 0.1 1.91 0.06
Sex_M 0.71 0.63 −0.52 1.93 1.13 0.26
Treatment_
vaccinated

−1.11 0.6 −2.29 0.08 −1.83 0.07
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unvaccinated group, and the p-value is relatively low considering the num-
ber of observations. With these results, one might decide to conduct a more 
extensive study or include additional explanatory variables (such as the days 
since the vaccine)—all while being cautious about conducting analysis until 
we get the desired answer (p-value hacking). Remember that significance test-
ing requires us to set an arbitrary threshold, and nothing magical happens at 
the .05 alpha level. From this study, we can report our findings (the associa-
tion is not statistically at the set alpha level), even if they are not what we were 
hoping for, and recommend further analysis to assess the vaccine’s efficacy.

Assumptions

In every statistical analysis, we must check the model assumptions. Some of 
the assumptions in Cox regression are consistent with those in OLS and GLM 
models. First, outcomes should be independent. That is, the outcome (e.g., 
survival time) of one patient should not depend on (or be associated with) 
the survival time of another.

Additionally, the relationship between continuous predictors and the log 
of the hazard rate (i.e., outcome) should be linear. This assumption ensures 
that the association between predictors and the hazard rate remains constant 
and does not exhibit nonlinear relationships that could bias the model’s 
estimates.

Unique to the Cox regression model are the assumptions of proportional 
hazards and non-informative censoring. The proportional hazards assump-
tion states that hazards associated with different levels of predictors must 
remain proportional over time. This means the hazard ratios between any 
two groups remain constant throughout the study period. Recall that haz-
ards may increase and decrease over time; however, the assumption here is 
that the difference in hazards between two groups (e.g., male and female, or 
treatment and no-treatment) will remain consistent (proportional) over time. 
If the risk ratio of a vaccine is .33 (66% lower hazard of death), we assume 
that regardless of time, the risk difference remains the same.

TABLE 9.5

Summary Output of the Predictor Variables from a Cox Regression, with  
Exponentiated Coefficients and 95% Confidence Intervals

exp(coef)
(Hazard Ratio)

exp(coef) 
lower 95%

exp(coef) 
upper 95% z p

Age 1.05 1 1.1 1.91 0.06
Sex_M 2.03 0.59 6.92 1.13 0.26
Treatment_vaccinated 0.33 0.1 1.08 −1.83 0.07
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The last assumption involves non-informative censoring, whereby data cen-
soring should be unrelated or independent of the outcome of interest. In 
other words, the probability of being censored should not be influenced by 
the likelihood of experiencing the event being studied.

Now that we’ve trudged through the details of Cox regression, we can 
move on to your favorite part, the Python code. Again, using the lifelines 
library, we can fit a Cox regression, adding risk factors for age and sex in 
addition to the treatment (vaccinated or unvaccinated).

import pandas as pd
from lifelines import CoxPHFitter
data = pd.DataFrame({
    'Event Time (Years)': [3, 3, 6, 4, 4, 3, 3, 5, 8, 8, 
7, 6, 10, 4, 4, 4, 4, 4, 9, 7, 3, 3, 6, 6, 7, 4, 4, 2, 7, 
5],
    'Age': [60, 48, 58, 74, 42, 64, 43, 26, 54, 59, 66, 
55, 71, 43, 45, 46, 35, 34, 54, 45, 60, 69, 41, 74, 46, 
85, 60, 66, 67, 73],
    'Sex': ['M', 'F', 'F', 'M', 'M', 'M', 'M', 'F', 'M', 
'M', 'M', 'F', 'F', 'F', 'M', 'M', 'M', 'F', 'M', 'M', 
'U', 'M', 'M', 'F', 'F', 'F', 'M', 'M', 'F', 'M'],
    'Observed Event (Mortality)': [0, 0, 0, 1, 0, 0, 0, 
0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 
1, 1, 1, 1],
    'Treatment': ['vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated']
})

data = pd.get_dummies(data, columns=['Sex', 'Treatment'], 
drop_first=True)

print(data.columns)

cph = CoxPHFitter()

cph.fit(data, duration_col='Event Time (Years)', event_
col='Observed Event (Mortality)', formula="Age + Sex_M + 
Treatment_vaccinated")

cph.print_summary()
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In the above code, categorical variables like ‘Sex’ and ‘Treatment’ are 
encoded into binary indicators using one-hot encoding to make them usable 
for the CoxPH model. The CoxPH model is fit using the CoxPHFitter() 
function from the lifelines library, considering the effect of age, male sex 
('Sex_M'), and being in the vaccinated treatment group ('Treatment_
vaccinated') on the time to the event. The code then prints out a summary 
of the fitted CoxPH model, which includes statistical information about the 
coefficients (or effects) of age, male sex, and being in the vaccinated group, 
along with other relevant statistics like p-values and confidence intervals.

Using R, we can again use the survival package. We’ll also use the dummy_
cols function from fastDummies package to create dummy (or “one-hot-
encoded”) variables for the categorical values. This can also be done with 
base R, but it’s a helpful library to keep the code nice and clean.

library(survival)
library(fastDummies)

data <- data.frame(
  Event_Time_Years = c(3, 3, 6, 4, 4, 3, 3, 5, 8, 8, 7, 
6, 10, 4, 4, 4, 4, 4, 9, 7, 3, 3, 6, 6, 7, 4, 4, 2, 7, 
5),
  Age = c(60, 48, 58, 74, 42, 64, 43, 26, 54, 59, 66, 55, 
71, 43, 45, 46, 35, 34, 54, 45, 60, 69, 41, 74, 46, 85, 
60, 66, 67, 73),
  Sex = c('M', 'F', 'F', 'M', 'M', 'M', 'M', 'F', 'M', 
'M', 'M', 'F', 'F', 'F', 'M', 'M', 'M', 'F', 'M', 'M', 
'U', 'M', 'M', 'F', 'F', 'F', 'M', 'M', 'F', 'M'),
  Observed_Event_Mortality = c(0, 0, 0, 1, 0, 0, 0, 0, 0, 
1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 
1, 1),
  Treatment = c('vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'vaccinated', 'vaccinated', 'vaccinated', 'vaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated', 
'unvaccinated', 'unvaccinated', 'unvaccinated')
)

data <- dummy_cols(data, select_columns = c("Sex", 
"Treatment"), remove_first_dummy = FALSE)

cox_model <- coxph(Surv(Event_Time_Years, Observed_Event_
Mortality) ~ Age + Sex_M + Treatment_vaccinated, data = 
data)

summary(cox_model)
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The code is fairly straightforward. Setting remove_first_dummy = 
FALSE ensures that all categories, including the reference category, are kept 
in the model. The Surv function creates a survival object (as we have seen 
with the log-rank test). The coxph function fits the Cox proportional hazards 
model using the age and sex predictors.

The results of this model have been provided in Tables 9.4 and 9.5.

Summary

In this chapter, three methods were discussed to evaluate and model time-
to-event data.

The first method discussed was the Kaplan–Meier curve, which creates 
visual survival curves, estimating event probabilities over time and accom-
modating censored data along the way. This non-parametric technique pres-
ents survival probabilities across time periods and further allows groups to 
be compared across time.

The Log Rank Test was also introduced as a complement to the Kaplan–
Meier curve which allows us to statistically compare survival curves between 
groups in the form of a hypothesis test. Finally, the section on Cox Proportional 
Hazards introduces a statistical model designed for time-to-event analy-
sis, particularly in understanding various factors’ impact on hazard rates. 
Hazards represent the likelihood of an event occurring within a specified 
timeframe, while hazard ratios compare these risks between different groups 
or conditions.

Additional Resources

Klein, J. P., & Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored and 
Truncated Data (2nd ed.). Springer-Verlag New York.
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